A LOOP MODULE OF THE EXTENDED AFFINE LIE ALGEBRA OF TYPE A

MARCUS EMMANUEL BARNES

(Received May 2003)

Abstract. We shall construct a loop module for the extended affine Lie algebra over a quantum torus.

1. Introduction

Extended affine Lie algebras form a new class of infinite dimensional Lie algebras, which were first introduced by Høegh–Krohn and Torresani [9] as a generalization of the finite dimensional simple Lie algebras and the affine Kac–Moody Lie algebras, and systematically studied in the book [1].

In this note, we give some irreducible representations for the extended affine Lie algebra of type A coordinated by a quantum torus. This loop module–like was motivated by Chari’s work [5]. Representations for extended affine Lie algebras have been constructed by a number of people. The approach in this note is very elementary and straightforward in some sense.

This work was carried out in the summer of 2001 supported by a NSERC Undergraduate Student Research Award. I am grateful to my supervisor Professor Yun Gao for his support and guidance.

2. An Extended Affine Lie Algebra

In this section we present our Lie algebra obtained by using a quantum torus.

Let $\mathbb{C}_q = \mathbb{C}_q[x^{\pm 1}, y^{\pm 1}]$ be the quantum torus which is an associative unital algebra over the complex field \mathbb{C} with generators $x^{\pm 1}$ and $y^{\pm 1}$, subject to the following relations:

$$xx^{-1} = x^{-1}x = 1$$
$$yy^{-1} = y^{-1}y = 1$$
$$yx = qxy.$$

Then $\mathbb{C}_q[x^{\pm 1}, y^{\pm 1}] = \oplus_{m,n \in \mathbb{Z}} \mathbb{C}x^m y^n$ which we will write as \mathbb{C}_q. We need some preliminary stuff before we define our algebra. Let d_x and d_y be the degree operators.

1991 Mathematics Subject Classification 17B10.

Key words and phrases: extended affine Lie algebra, loop module, quantum torus, irreducible module.

This work was supported by NSERC.
— that is,
\[d_x x^m y^n = m x^m y^n \]
\[d_y x^m y^n = n x^m y^n. \]

The degree operators \(d_x \) and \(d_y \) are derivations of \(\mathbb{C}_q \) which can be lifted to be derivations of \(\mathfrak{M}_n(\mathbb{C}_q) \).

We now define a \(\mathbb{C} \)–linear function \(\varepsilon : \mathbb{C}_q \to \mathbb{C} \) by
\[
\varepsilon(x^m y^n) = \begin{cases} 1 & \text{if } m = n = 0, \\ 0 & \text{otherwise.} \end{cases}
\]

Recall that for an associative algebra \(R \), the matrix algebra \(\mathfrak{M}_n(R) \) is an associative algebra. Then the general linear Lie algebra over \(R \) is \(\mathfrak{gl}_n(R) = \mathfrak{M}_n(R) \) where the Lie bracket is given by \([A,B] = AB - BA\) for \(A, B \in R \). Consider the Lie algebra \(\mathfrak{gl}_n(\mathbb{C}_q) \).

Let \(c_x \) and \(c_y \) be symbols. Set
\[\mathfrak{g} \mathfrak{l}_n(\mathbb{C}_q) = \mathfrak{gl}_n(\mathbb{C}_q) \oplus \mathbb{C}c_x \oplus \mathbb{C}c_y \]
where \([A,B] = AB - BA + \varepsilon(\text{tr}((d_x A)B)) c_x + \varepsilon(\text{tr}((d_y A)b)) c_y \) and
\[
[c_x, c_x] = 0,
[c_y, c_y] = 0,
[c_x, c_y] = 0,
[c_x, \mathfrak{gl}_n(\mathbb{C}_q)] = [\mathfrak{gl}_n(\mathbb{C}_q), c_x] = 0,
[c_y, \mathfrak{gl}_n(\mathbb{C}_q)] = [\mathfrak{gl}_n(\mathbb{C}_q), c_y] = 0.
\]

Claim. \(\mathfrak{g} \mathfrak{l}_n(\mathbb{C}_q) \) is a Lie algebra.

This can be verified by noting that \(\varepsilon(\varepsilon(a)) = 0 = \varepsilon(\varepsilon(a)) = 0 \) for \(a \in (\mathbb{C}_q), \]
\(\varepsilon(\text{tr}(AB)) = \varepsilon(\text{tr}(BA)), B, A \in \mathfrak{M}_n(\mathbb{C}_q), \) and the fact that \(d_x, d_y \) are derivations.

We will now form a semi–direct product of the Lie algebra \(\mathfrak{g} \mathfrak{l}_n(\mathbb{C}_q) \) with the degree operators \(d_x, d_y \).
\[\mathfrak{g} \mathfrak{l}_n(\mathbb{C}_q) = \mathfrak{g} \mathfrak{l}_n(\mathbb{C}_q) \oplus \mathbb{C}d_x \oplus \mathbb{C}d_y \]
subject to the following brackets:
\[
[d_x, c_x] = 0,
[d_y, c_x] = 0,
[d_x, d_y] = 0,
[d_x, A] = d_x A,
[d_y, A] = d_y A.
\]

The Lie algebra \(\mathfrak{g} \mathfrak{l}_n(\mathbb{C}_q) \) is called an extended affine Lie algebra.

3. \(M_n(\mathbb{C}_q) \) — Modules

In this section we will introduce two modules of \(\mathfrak{M}_n(\mathbb{C}_q) \) which would naturally give modules for the extended affine Lie algebra \(\mathfrak{g} \mathfrak{l}_n(\mathbb{C}_q) \).

Let \(W \) be a \(\mathbb{C}_q \)–module and \(V \) a \(\mathfrak{M}_n(\mathbb{C}) \)–module. We know that \(V \otimes W \) is an \(\mathfrak{M}_n(\mathbb{C}) \)–module.

We will now construct our modules:
Construction. Let $V = \mathbb{C}^n$ be the natural module for $M_n(\mathbb{C})$ and let $W_1 = \mathbb{C}_q$ with left multiplication as the module action. Then $V \otimes W_1$ is a $M_n(\mathbb{C}_q)$-module.

Construction. Let $V = \mathbb{C}^n$ be the natural module for $M_n(\mathbb{C})$ and let $W_2 = \mathbb{C}[x, x^{-1}]$, with \mathbb{C}_q-module action defined by x as left multiplication such that $x^m y^n f(x) = x^m f(q^n x)$. Then $V \otimes W_2$ is a $M_n(\mathbb{C}_q)$-module. Moreover, if q is not a root of unity, $V \otimes W_2$ is irreducible.

We will prove our claim in Construction 2, which will be a direct consequence of the following two lemmas:

Lemma 1. If $V = \mathbb{C}^n$ is the natural representation of $M_n(\mathbb{C})$ and W is irreducible as a \mathbb{C}_q-module, then $V \otimes W$ is an irreducible $M_n(\mathbb{C}_q)$-module.

Proof. Let N be a submodule of $V \otimes W$. If $U = \sum_{i=1}^n e_i \otimes w_i \neq 0 \in N$ where $\{e_i\}$ is the standard basis of \mathbb{C}^n then $e_k e_i = \delta_{ik} e_k$ where δ_{ik} is the Kronecker delta and e_i is the standard matrix unit. So $e_k e_i = \sum_{i=1}^n e_k e_i \otimes w_i = e_k \otimes w_j$. Hence $e_k \otimes w_j \in N$. If $U \neq 0$ then $e_j \otimes w_j \in N$, $w_j \neq 0$ for some j. Now $e_i(a)(e_j \otimes w_j) = e_i \otimes aw_j \in N$ for all i and $a \in \mathbb{C}_q$. Since W is \mathbb{C}_q-irreducible, $e_i \otimes W \subseteq N$ for all i. This implies that $V \otimes W \subseteq N$, which implies that $N = V \otimes W$. Therefore $V \otimes W$ is irreducible. \qed

Lemma 2. $W_2 = \mathbb{C}[x, x^{-1}]$ is \mathbb{C}_q-irreducible if q is not a root of unity.

Proof. Let N be a submodule of W_2. Let $f(x) = \sum_{i=0}^n a_i x^i \neq 0 \in W_2$. We may assume that $f(x) = a_0 + a_1 x + \ldots + a_n x^n \in N$. Now $y^n f(x) = f(q^n x) \in N$ for all $m \in \mathbb{Z}$. Consider the following $n + 1$ equations:

\[
\begin{align*}
a_0 + a_1 x + \ldots + a_n x^n &= f(x) \\
a_0 + a_1 q x + \ldots + a_n q^n x^n &= f(qx) \\
a_0 + a_1 q^2 x + \ldots + a_n q^{2n} x^n &= f(q^2 x) \\
&\vdots \\
a_0 + a_1 q^n x + \ldots + a_n q^{n^2} x^n &= f(q^n x).
\end{align*}
\]

Consider the coefficient matrix which is a Vandermonde matrix of these $n + 1$ equations:

\[
P = \begin{pmatrix} 1 & 1 & \ldots & 1 \\
1 & q & \ldots & q^n \\
1 & q^2 & \ldots & q^{2n} \\
\vdots & \vdots & \ddots & \vdots \\
1 & q^n & \ldots & q^{n^2} \end{pmatrix}.
\]

So

\[
P \begin{pmatrix} a_0 \\ a_1 x \\ \vdots \\ a_n x^n \end{pmatrix} = \begin{pmatrix} f(x) \\ f(qx) \\ \vdots \\ f(q^n x) \end{pmatrix}.
\]
Since \(q \) is not a root of unity, \(P \) is invertible. Hence
\[
\begin{pmatrix}
a_0 \\ a_1x \\ \vdots \\ a_nx^n
\end{pmatrix} = P^{-1} \begin{pmatrix}
f(x) \\ f(qx) \\ \vdots \\ f(q^n x)
\end{pmatrix}.
\]
Therefore \(a_i x^i \in \mathbb{N} \) for all \(i = 0, 1, \ldots, n \). We assumed at \(f(x) \neq 0 \) so \(a_j x^j \neq 0 \) for some \(j \). Hence \(a_j^{-1} x^{-1} a_j x^j = 1 \in \mathbb{N} \). From this it follows that \(W_2 = \mathbb{N} \) and hence \(W_2 \) is \(\mathbb{C}_q \)-irreducible. \(\square \)

So from these two lemmas we immediately have:

Theorem 3. If \(V = \mathbb{C}^n \), the natural module for \(M_n(\mathbb{C}) \) and \(W = \mathbb{C}[x, x^{-1}] \), a \(\mathbb{C}_q \)-module, and a module action given by \(x^m y^n f(x) = x^{mn} f(q^n x) \), then \(V \otimes W \) is a \(M_n(\mathbb{C}_q) \)-module if \(q \) is not a root of unity.

4. \(\tilde{g}_n(\mathbb{C}_q) \)–Modules

We now state and prove the main results of this paper.

Theorem 4. \(V \otimes W_1 \) is an \(\tilde{g}_n(\mathbb{C}_q) \)-module. Moreover, \(V \otimes W_1 \) is irreducible.

Proof. The actions are defined in the natural way. For example, \(c_x \) and \(c_y \) act trivially. The proof follows from Lemma 1. \(\square \)

Theorem 5. \(V \otimes W_2 \times \mathbb{C}[y, y^{-1}] \) is an \(\tilde{g}_n(\mathbb{C}_q) \)-module. Moreover, if \(q \) is not a root of unity, \(V \otimes W_2 \) is irreducible.

Proof. The actions are defined naturally. The actions \(c_x \) and \(c_y \) are trivial. The proof follows from Lemma 1 and Theorem 1. \(\square \)

References

Marcus Emmanuel Barnes

c/o Professor Richard Ganong

Department of Mathematics and Statistics

York University

N520 Ross Building

4700 Keele Street,

Toronto

Ontario

CANADA M3J 1P3

yu250248@mathstat.yorku.ca