APPROXIMATION BY GENERALIZED FABER SERIES IN BERGMAN SPACES ON INFINITE DOMAINS WITH A QUASICONFORMAL BOUNDARY

DANIYAL M. ISRAFILOV AND YUNUS E. YILDIRIR

(Received April 2004)

Abstract. Using an integral representation on infinite domains with a quasiconformal boundary the generalized Faber series for the functions in the Bergman space \(A^2(G) \) are defined and their approximative properties are investigated.

1. Introduction and New Results

Let \(G \) be a simple connected domain in the complex plane \(\mathbb{C} \) and let \(\omega \) be a weight function given on \(G \). For functions \(f \) analytic in \(G \) we set

\[
A^2(G, \omega) := \left\{ f : \iint_G |f(z)|^2 \omega(z) d\sigma_z < \infty \right\},
\]

where \(d\sigma_z \) denotes the Lebesgue measure in the complex plane \(\mathbb{C} \).

If \(\omega = 1 \), we denote \(A^2(G) := A^2(G, 1) \). The space \(A^2(G) \) is called the Bergman space on \(G \). We refer to the spaces \(A^2(G, \omega) \) as “weighted Bergman spaces”. It becomes a normed spaces if we define

\[
\|f\|_{A^2(G, \omega)} := \left(\iint_G |f(z)|^2 \omega(z) d\sigma_z \right)^{1/2}.
\]

Hereafter, we consider only the special weight \(\omega(z) := 1/|z|^4 \) in this work.

Now let \(L \) be a finite quasiconformal curve in the complex plane \(\mathbb{C} \). We recall that \(L \) is called a quasiconformal curve if there exists a quasiconformal homeomorphism of the complex plane onto itself that maps a circle onto \(L \). We denote by \(G_1 \) and \(G_2 \) the bounded and unbounded complements of \(\mathbb{C} \setminus L \), respectively. It is clear that if \(f \in A^2(G_2) \), then it has zero in \(\infty \) at least second order. As in the bounded case \([7, p. 5]\), \(A^2(G_2) \) is a Hilbert space with the inner product

\[
\langle f, g \rangle := \iint_{G_2} f(z)\overline{g(z)} d\sigma_z,
\]

1991 Mathematics Subject Classification 30E10, 41A10, 41A25, 41A58.

Key words and phrases: Faber polynomials, Faber series, Error of approximation, Quasiconformal curves, Bergman spaces.
which can be easily verified. Moreover, the set of polynomials of $1/z$ are dense in $A^2(G_2)$ with respect to the norm

$$
\|f\|_{A^2(G_2)} := (\langle f, f \rangle)^{1/2}.
$$

Indeed, let $f \in A^2(G_2)$. If we substitute $z = 1/\zeta$ and define

$$
f(z) = f \left(\frac{1}{\zeta}\right) =: f_\ast(\zeta),
$$

then G_2 maps to a finite domain G_\ast, and $f_\ast \in A^2(G_\ast)$, because

$$
\iint_{G_\ast} |f_\ast(\zeta)|^2 \, d\sigma_\zeta = \iint_{G_2} |f(z)|^2 \frac{d\sigma_z}{|z|^2} \leq c \iint_{G_2} |f(z)|^2 \, d\sigma_z < \infty,
$$

with some constant $c > 0$. Since f has zero in ∞ at least second order, the point $\zeta = 0$ is the zero of f_\ast at least second order and

$$
\iint_{G_\ast} \left|\frac{f_\ast(\zeta)}{\zeta^2}\right|^2 \, d\sigma_\zeta = \iint_{G_2} |f(z)|^2 \, d\sigma_z < \infty.
$$

Hence $f_\ast(\zeta)/\zeta^2 \in A^2(G_\ast)$. If $P_n(\varsigma)$ is a polynomial of ς, then we have

$$
\iint_{G_\ast} \left|\frac{P_n(\varsigma) - f_\ast(\varsigma)}{\varsigma^2}\right|^2 \, d\sigma_\zeta = \iint_{G_\ast} \left|P_n(\varsigma)\varsigma^2 - f_\ast(\varsigma)\right|^2 \frac{1}{|\varsigma|^4} \, d\sigma_\zeta

= \iint_{G_\ast} \left|P_n \left(\frac{1}{z}\right) \frac{1}{z^2} - f(z)\right|^2 \, d\sigma_z.
$$

This implies that the set of polynomials of $1/z$ are dense in $A^2(G_2)$, since the set of polynomials $P_n(\varsigma)$ are dense in $A^2(G_\ast)$ with respect to the norm

$$
\|f\|_{A^2(G_\ast)} := (\langle f, f \rangle)^{1/2}.
$$

(see, for example: [7, Ch. 1]). Also, for $n = 1, 2, \ldots$ there exists a polynomial $P_\ast^n(1/z)$ of $1/z$, of degree $\leq n$, such that $E_n(f, G_2) = \|f - P_\ast^n\|_{A^2(G_2)}$ (see for example, [6, p. 59, Theorem 1.1.]), where

$$
E_n(f, G_2) := \text{Inf} \left\{\|f - P\|_{A^2(G_2)} : P \text{ is a polynomial of } 1/z, \text{ of degree } \leq n\right\}
$$

denotes the minimal error of approximation of f by polynomials of $1/z$ of degree at most n. The polynomial $P_\ast^n(1/z)$ is called the best approximant polynomial of $1/z$ to $f \in A^2(G_2)$.

Let D be the open unit disc and $w = \varphi(z)$ be the conformal mapping of G_1 onto $C \setminus D := \mathbb{C} \setminus \overline{D}$, normalized by the conditions

$$
\varphi(0) = \infty \quad \text{and} \quad \lim_{z \to 0} z \varphi(z) > 0,
$$

and let ψ be the inverse of φ. In the neighborhood of the origin we have the expansion

$$
\varphi(z) = \frac{\alpha}{z} + \alpha_0 + \alpha_1 z + \ldots.
$$
Raising this function to the power \(m \) we obtain

\[
[\varphi(z)]^m = F_m(1/z) + Q_m(z) \quad \text{for} \quad z \in G_1,
\]

(1.1)

where \(F_m(1/z) \) denotes the polynomial of negative powers of \(z \) and the term \(Q_m(z) \) contains non-negative powers of \(z \) and is analytic in the domain \(G_1 \). The polynomial \(F_m(1/z) \) of negative powers of \(z \) is called the generalized Faber polynomial for the domain \(G_2 \). If \(z \in G_2 \), then integrating in the positive direction along \(L \), we have

\[
F_m \left(\frac{1}{z} \right) = -\frac{1}{2\pi i} \int \frac{[\varphi(\zeta)]^m}{\zeta - z} d\zeta = -\frac{1}{2\pi i} \int \frac{w^m \varphi'(w)}{\varphi(w) - z} dw.
\]

This formula implies that the functions \(F_m(1/z), \; m = 1, 2, \ldots \) are the Laurent coefficients in the expansion of the function

\[
\frac{\varphi'(w)}{\varphi(w) - z} \quad z \in G_2, \; w \in \mathbb{C}^D
\]

in the neighborhood of the point \(w = \infty \), i.e. the following expansion holds

\[
\frac{\varphi'(w)}{\varphi(w) - z} = \sum_{m=1}^{\infty} F_m \left(\frac{1}{z} \right) \frac{1}{w^{m+1}} \quad z \in G_2, \; w \in \mathbb{C}^D,
\]

which converges absolutely and uniformly on compact subsets of \(G_2 \times \mathbb{C}^D \). Differentiation of this equality with respect to \(z \) gives

\[
\frac{\varphi''(w)}{(\varphi(w) - z)^2} = \sum_{m=1}^{\infty} F'_m \left(\frac{1}{z} \right) \left(-\frac{1}{z^2} \right) \frac{1}{w^{m+1}}
\]

or

\[
\frac{z^2 \varphi''(w)}{(\varphi(w) - z)^2} = \sum_{m=1}^{\infty} -F'_m \left(\frac{1}{z} \right) \frac{1}{w^{m+1}}
\]

(1.2)

for every \((z, w) \in G_2 \times \mathbb{C}^D \), where the series converges absolutely and uniformly on compact subsets of \(G_2 \times \mathbb{C}^D \). More information for Faber and generalized Faber polynomials can be found in [12, p. 255] and [7, p. 42].

In this work, for the first time, we obtain (Section 2, Lemma 2.1) an integral representation on the infinite domain \(G_2 \) with a quasiconformal boundary for a function \(f \in A^2(G_2) \). By means of this integral representation in Section 2 we define a generalized Faber series of a function \(f \in A^2(G_2) \) to be of the form

\[
\sum_{m=1}^{\infty} a_m(f) F'_m \left(\frac{1}{z} \right),
\]

with the generalized Faber coefficients \(a_m(f), \; m = 1, 2, \ldots \).

Our main results are presented in the following theorems, which are proved in Section 3.

Theorem 1.1. Let \(f \in A^2(G_2) \). If

\[
\sum_{m=1}^{\infty} a_m(f) F'_m \left(\frac{1}{z} \right)
\]

(1.3)

is a generalized Faber series of \(f \), then this series converges uniformly to \(f \) on the compact subsets of \(G_2 \).
Corollary 1.2. Let $P_n(1/z)$ be a polynomial of degree n of $1/z$ and $P_n(1/z) \in A^2(G_2)$. If $a_m(P_n)$ are its generalized Faber coefficients, then $a_m(P_n) = 0$ for all $m \geq n + 2$ and

$$P_n \left(\frac{1}{z} \right) = \sum_{m=1}^{n+1} a_m(P_n) F_m' \left(\frac{1}{z} \right).$$

A uniqueness theorem for the series

$$\sum_{m=1}^\infty a_m(f) F_m' \left(\frac{1}{z} \right),$$

which converges to $f \in A^2(G_2)$ with respect to the norm $\| \cdot \|_{A^2(G_2)}$ is the following.

Theorem 1.3. Let $\{a_m\}$ be a complex number sequence. If the series

$$\sum_{m=1}^\infty a_m F_m' \left(\frac{1}{z} \right)$$

converges to a function $f \in A^2(G_2)$ in the norm $\| \cdot \|_{A^2(G_2)}$, then the a_m, $m = 1, 2, \ldots$, are the generalized Faber coefficients of f.

The following theorem estimates the error of the approximation of $f \in A^2(G_2)$ by the partial sums of the series (1.3) in the weighted norm $\| \cdot \|_{A^2(G_2, \omega)}$ for the special weight $\omega(z) := 1/|z|^4$, regarding to the minimal error $E_n(f, G_2)$.

Theorem 1.4. If $f \in A^2(G_2)$, $\omega(z) := 1/|z|^4$ and

$$S_n \left(f, \frac{1}{z} \right) = \sum_{m=1}^{n+1} a_m F_m' \left(\frac{1}{z} \right)$$

is the nth partial sum of its generalized Faber series

$$\sum_{m=1}^\infty a_m F_m' \left(\frac{1}{z} \right),$$

then

$$\| f - S_n(f, \cdot) \|_{A^2(G_2, \omega)} \leq \frac{c}{1 - k^2} \sqrt{n} E_n(f, G_2),$$

for all natural numbers n and with a constant c independent of n.

Similar results for the bounded domains with a quasiconformal boundary were stated and proved in [8] and [5], respectively. These problems in the weighted cases were studied in [9] and [10].

We shall use c, c_1, \ldots, to denote constants depending only on parameters that are not important for the questions of interest.

2. Definitions and Some Auxiliary Results

In [4], V.I. Belyi gave the following integral representation for the functions f analytic and bounded in the domain G_1:

$$f(z) = -\frac{1}{\pi} \int_{G_2} \int_{G_2} \frac{(f \circ y)(\zeta)}{(\zeta-z)^2} \frac{\eta_\zeta(\zeta)}{\zeta} d\sigma_\zeta, \quad z \in G_1.$$
Here \(y(z) \) is a \(K \)-quasiconformal reflection across the boundary \(L \), i.e., a sense-reversing \(K \)-quasiconformal involution of the extended complex plane keeping every point of \(L \) fixed, such that \(y(G_1) = G_2, \; y(G_2) = G_1, \; y(0) = \infty \) and \(y(\infty) = 0 \). Such a mapping of the plane does exist \([11, \; p. \; 99]\). As follows from Ahlfors theorem \([1, \; p. \; 80]\) the reflection \(y(z) \) can always be chosen canonical in the sense that it is differentiable on \(C \) almost everywhere, except possibly at the points of the curve \(L \), and for any sufficiently small fixed \(\delta > 0 \) it satisfies the relations

\[
|y(z)| + |y(\zeta)| \leq c_1, \quad \text{if } \zeta \in \{ \zeta \mid \delta < |\zeta| < 1/\delta, \quad \zeta \notin L \}
\]

\[
|y(z)| + |y(\zeta)| \leq c_2|\zeta|^{-2}, \quad \text{if } |\zeta| \geq 1/\delta \text{ or } |\zeta| \leq \delta,
\]

with some constants \(c_1 \) and \(c_2 \), independent of \(\zeta \).

Considering only the canonical quasiconformal reflections, I.M. Batchaev \([3]\) generalized the integral representation above to functions \(f \in A^2(G_1) \). The accurate proof of the Batchaev’s result is given in \([2, \; p. \; 110, \; Th. \; 4.4]\). A similar integral representation can also be obtained for functions \(f \in A^2(G_2) \). The following result holds.

Lemma 2.1. Let \(f \in A^2(G_2) \). If \(y(z) \) is a canonical quasiconformal reflection with respect to \(L \), then

\[
f(z) = -\frac{1}{\pi} \int_{G_1} \frac{(f \circ y_{\zeta})(z)^2}{(\zeta - z)^2 |y_{\zeta}(\zeta)|^2} J d\zeta, \quad z \in G_2. \tag{2.1}
\]

Proof. Let \(y(z) \) a canonical quasiconformal reflection and \(f \in A^2(G_2) \). If we substitute \(\zeta = 1/u \) for \(\zeta \in G_2 \) and define

\[
f(\zeta) = f(1/u) =: f_\ast(u),
\]

then \(G_2 \) maps to a finite domain \(G_u \) and \(f_\ast \in A^2(G_u) \). If \(y^\ast(t) \) is a canonical quasiconformal reflection with respect to \(\partial G_u \), then from the Batchaev’s result we have

\[
f_\ast(t) = -\frac{1}{\pi} \int_{G_u} \frac{(f_\ast \circ y^\ast)(u)}{(u - t)^2 |y^\ast(u)|^2} J d\sigma_t, \quad t \in G_u,
\]

where \(\overline{G_u} := \mathbb{C} \setminus \overline{G_u} \). Substituting \(u = 1/\zeta \) in this integral representation we get

\[
f(z) = f(1/t) = f_\ast(t) = -\frac{1}{\pi} \int_{G_1} \frac{(f_\ast \circ y^\ast)(1/\zeta)}{(1/\zeta - 1/z)^2 |y^\ast(1/\zeta)| J d\sigma_t}
\]

\[
= \frac{1}{\pi} \int_{G_1} \frac{f(1/y^\ast(1/\zeta))z^2}{(\zeta - z)^2 |y^\ast(1/\zeta)|^2} J d\zeta, \quad z \in G_2.
\]

If we define

\[
y(\zeta) := \frac{1}{y^\ast(1/\zeta)},
\]

then \(y(\zeta) \) becomes a canonical quasiconformal reflection with respect to \(L \). Consequently, for \(f \in A^2(G_2) \) we get

\[
f(z) = -\frac{1}{\pi} \int_{G_1} \frac{(f \circ y)(\zeta)^2}{(\zeta - z)^2 |y(\zeta)|^2} J d\zeta, \quad z \in G_2.
\]
Thus, if we define the coefficients $a_m(f)$, $m = 1, 2, \ldots$, by

$$a_m(f) := \frac{1}{\pi} \int_{C^D} \frac{f(y(\psi(w)))\psi'(w)}{[y(\psi(w))]^2} \cdot \frac{z^2 \psi'(w)}{(\psi(w) - z)^2} d\sigma_w, \quad z \in G_2. \quad (2.2)$$

then, by (1.2) and (2.2), we can associate a formal series $\sum_{m=1}^{\infty} a_m(f)F_m^2(1/z)$ with the function $f \in A^2(G_2)$, i.e.,

$$f(z) \sim \sum_{m=1}^{\infty} a_m(f)F_m^2(1/z).$$

We call this formal series a generalized Faber series of $f \in A^2(G_2)$, and the coefficients $a_m(f)$, $m = 1, 2, \ldots$, generalized Faber coefficients of f.

Lemma 2.2. Let $\{F_m(1/z)\}$, $m = 1, 2, \ldots$, be the generalized Faber polynomials of $1/z$ for G_2. Then

$$\sum_{m=1}^{n} \left \| \frac{F_m}{F_m^2} \right \|_{A^2(G_2)}^2 \leq n\pi.$$

Proof. Since $\overline{\psi}(\zeta)$ is a canonical K-quasiconformal mapping of the extended complex plane onto itself, we have $\left | \overline{\psi}_\zeta / \overline{\psi}_z \right | \leq k$ and $\left | \overline{\psi}_z \right |^2 - \left | \overline{\psi}_\zeta \right |^2 > 0$. Also, it is known that $\left | \overline{\psi}_\zeta \right | = |y_\zeta|$ and $\left | \overline{\psi}_z \right | = |y_z|$. Therefore, $|y_\zeta| / |y_z| \leq k$ and $|y_z|^2 - |y_\zeta|^2 > 0$. Hence

$$\int_{G_2} \left | (f \circ y)(\zeta)^2 \right | \left | \frac{y_z}{y_\zeta} \right |^2 d\sigma_\zeta$$

$$= \int_{G_2} \left | (f \circ y)(\zeta)^2 \left (1 - |y_\zeta|^2 / |y_z|^2 \right) \right |^{-1} \left | y_z - y_\zeta \right |^2 d\sigma_\zeta$$

$$\leq \frac{1}{1 - k^2} \int_{G_2} \left | (f \circ y)(\zeta)^2 \right | \left | y_z - y_\zeta \right |^2 d\sigma_\zeta.$$

Since $\left (|y_z|^2 - |y_\zeta|^2 \right)$ is the Jacobian of $y(\zeta)$, substituting ζ for $y(\zeta)$ on the right side of the last inequality we get

$$\int_{G_2} \left | (f \circ y)(\zeta)^2 \right | \left | y_z \right |^2 d\sigma_\zeta \leq \frac{\| f \|_{A^2(G_2)}^2}{1 - k^2}.$$
3. Proofs of the New Results

Proof of Theorem 1.1. Let \(M \) be a compact subset of \(G_2 \) and \(y(z) \) a canonical \(K \)-quasiconformal reflection with respect to \(L \). Since by Lemma 2.1

\[
f(z) = -\frac{1}{\pi} \int \frac{(f \circ y)(\zeta)z^2}{(\zeta - z)(y(\zeta))^2} d\sigma_{\zeta}
\]

by means of (2.3), H"older's inequality and Lemma 4 we obtain

\[
\left| f(z) - \sum_{m=1}^{n} a_m(f) F_m'(1/z) \right| \leq \frac{c_3 \| f \|_{A^2(G_2)}}{\pi \sqrt{1 - k^2}} \left(\int \left[\frac{z^2 \psi'(w)}{(\psi(w) - z)^2} \sum_{m=1}^{n} \frac{F_m'(1/z)}{w^{m+1}} \right]^2 d\sigma_w \right)^{1/2},
\]

for every \(z \in M \), where the constant \(c_3 \) depends only on \(L \).

Let \(1 < r < R < \infty \). In view of (1.2)

\[
\int_{r < |w| < R} \left[\frac{z^2 \psi'(w)}{(\psi(w) - z)^2} \sum_{m=1}^{n} \frac{F_m'(1/z)}{w^{m+1}} \right]^2 d\sigma_w
\]

by letting \(r \to 1^+ \) and \(R \to \infty \) we get

\[
\int_{C_D} \left[\frac{z^2 \psi'(w)}{(\psi(w) - z)^2} + \sum_{m=1}^{n} \frac{F_m'(1/z)}{w^{m+1}} \right]^2 d\sigma_w \leq 4\pi \sum_{m=1}^{n} \frac{|F_m'(1/z)|^2}{m+1},
\]

Therefore, by (3.1), (3.2) and Lemma 3 we conclude that

\[
\sum_{m=1}^{\infty} a_m(f) F_m'(1/z)
\]

converges uniformly to \(f \) on \(M \).

Proof of Corollary 1.2. Let \(z \in G_2 \). By Theorem 1.1 we have

\[
P_n(1/z) = \sum_{m=1}^{\infty} a_m(P_n) F_m'(1/z).
\]
On the other hand, $P_n(1/z)$ can be written in the form

$$P_n(1/z) = \sum_{k=1}^{n+1} A_k F'_k(1/z),$$

with the specific coefficients A_k, $k = 1, 2, \ldots, n+1$. Let $y(z)$ be a canonical K-quasiconformal reflection relative to L. Since $y(z)$ is identical on L, by Green’s formulae we get

$$a_m(P_n) = \frac{1}{\pi} \int_{C\mathcal{D}} \frac{P_n \left[1/y(\psi(w))\right]}{w^{m+1}} \frac{\overline{\psi'(w)}}{|y(\psi(w))|^2} y'(\psi(w)) d\sigma_w$$

$$= \frac{1}{\pi} \int_{C\mathcal{D}} -\frac{\partial}{\partial \overline{w}} \left(F_k \left[1/y(\psi(w))\right] \right) \frac{1}{w^{m+1}} d\sigma_w$$

$$= \frac{1}{2\pi i} \int_{|w|=1} F_k \left[1/\psi(w)\right] \frac{1}{w^{m+1}} dw.$$

By (1.1)

$$F_m \left[1/\psi(w)\right] = w^m - Q_m(\psi(w)),$$

where $Q_m(\psi(w))$ is analytic in $C\mathcal{D}$, and then

$$\frac{1}{2\pi i} \int_{|w|=1} F_k \left[1/\psi(w)\right] \frac{1}{w^{m+1}} dw = QATOPD \begin{cases} 1, & \text{if } k = m, \\ 0, & \text{if } k \neq m, \end{cases}$$

(3.3)

which implies that $a_m(P_n) = A_m$, for $m = 1, \ldots, n+1$, and $a_m(P_n) = 0$ for all $m \geq n + 2$. Hence

$$P_n(1/z) = \sum_{m=1}^{n+1} a_m(P_n) F'_m(1/z).$$

Proof of Theorem 1.3. Let $y(z)$ be a canonical K-quasiconformal reflection relative to L and

$$S_n(f, 1/z) := \sum_{m=1}^{n+1} a_m F'_m(1/z)$$

be the nth partial sum of

$$\sum_{m=1}^{\infty} a_m F'_m(1/z).$$

Using (3.3) it can be shown that

$$\lim_{n \to \infty} \frac{1}{\pi} \int_{C\mathcal{D}} S_n \left[1/y(\psi(w))\right] \frac{\overline{\psi'(w)}}{|y(\psi(w))|^2} y'(\psi(w)) d\sigma_w = a_m, \quad m = 1, 2, \ldots. \quad (3.4)$$
If m and n are natural numbers, then by using Hölder’s inequality and Lemma 4 we get

$$|a_m(f) - a_m| \leq \frac{1}{\pi} \left| \int_{C\mathcal{D}} \frac{f(y(\psi(w))) - S_n[1/y(\psi(w))] \overline{\psi'}(w)}{w^{m+1} |y(\psi(w))|^2} y(\psi(w)) d\sigma_w \right|$$

$$+ \frac{1}{\pi} \int_{C\mathcal{D}} \frac{S_n[1/y(\psi(w))] \overline{\psi'}(w)}{w^{m+1} |y(\psi(w))|^2} y(\psi(w)) d\sigma_w - a_m \right| \leq \frac{1}{\pi} \left(\int_{C\mathcal{D}} \frac{d\sigma_w}{|w|^{2m+2}} \right)^{1/2}$$

$$\times \left(\int_{C\mathcal{D}} \left| \frac{f(y(\psi(w)) - S_n[1/y(\psi(w))] |\psi'(w)|^2}{y(\psi(w))} \right|^2 d\sigma_w \right)^{1/2}$$

$$+ \frac{1}{\pi} \int_{C\mathcal{D}} \frac{S_n[1/y(\psi(w))] \overline{\psi'}(w)}{w^{m+1} |y(\psi(w))|^2} y(\psi(w)) d\sigma_w - a_m \right| \leq \frac{c_4}{\sqrt{m\pi}} \left(\int_{\mathcal{G}_1} |(f - S_n) \circ y(\zeta)|^2 |y(\zeta)|^2 d\sigma_\zeta \right)^{1/2}$$

$$+ \frac{1}{\pi} \int_{C\mathcal{D}} \frac{S_n[1/y(\psi(w))] \overline{\psi'}(w)}{w^{m+1} |y(\psi(w))|^2} y(\psi(w)) d\sigma_w - a_m \right| \leq \frac{c_4 \|f - S_n\|_{A^2(G_2)}}{\sqrt{m\pi(1 - K^2)}}$$

$$+ \frac{1}{\pi} \int_{C\mathcal{D}} \frac{S_n[1/y(\psi(w))] \overline{\psi'}(w)}{w^{m+1} |y(\psi(w))|^2} y(\psi(w)) d\sigma_w - a_m \right|.$$

Since $\lim_{n \to \infty} \|f - S_n\|_{A^2(G_2)} = 0$, (3.4) and (3.5) show that $a_m(f) = a_m$, $m = 1, 2, \ldots$.

Proof of Theorem 1.4. Let $y(z)$ be a canonical K-quasiconformal reflection with respect to L, and $P_n^*(1/z)$ the best approximant polynomial to $f \in A^2(G_2)$ in the norm $\|\|_{A^2(G_2)}$. For $z \in G_2$, by means of Hölder’s inequality, Lemma 4 and
Corollary 1.2 we obtain
\[|f(z) - S_n(f, 1/z)| \leq |f(z) - P_n^*(1/z)| + |P_n^*(1/z) - S_n(f, 1/z)| \]
\[\leq |f(z) - P_n^*(1/z)| + \left| \sum_{m=1}^{n+1} (a_m(P_n^*) - a_m(f)) F_n'(1/z) \right| \]
\[\leq |f(z) - P_n^*(1/z)| \]
\[+ \frac{1}{\pi} \left| \int_{G} \left(f \circ y - P_n^* \circ y \right)(\psi(w)) \overline{\psi'(w)} y \overline{\psi}(\psi(w)) \sum_{m=1}^{n+1} \frac{F_n'(1/z)}{w^{m+1}} \right| \]
\[\leq |f(z) - P_n^*(1/z)| \]
\[+ \frac{1}{\pi} \left(\int_{G} \left| f \circ y - P_n^* \circ y \right| |\psi'(w)| |y \overline{\psi}(\psi(w))|^2 \right)^{1/2} \]
\[\times \left(\int_{G} \sum_{m=1}^{n+1} \left| \frac{F_n'(1/z)}{w^{m+1}} \right|^2 d\sigma_w \right)^{1/2} \]
\[\leq |f(z) - P_n^*(1/z)| + \frac{c_5}{\pi} \left(\int_{G} \left| f \circ y - P_n^* \circ y \right| |\psi'(w)| \right)^{1/2} \]
\[\times \left(\sum_{m=1}^{n+1} \left| \frac{F_n'(1/z)}{m} \right|^2 \right)^{1/2} \]
\[\leq |f(z) - P_n^*(1/z)| + \frac{c_5}{\sqrt{\pi(1 - k^2)}} \left\| f - P_n^* \right\|_{A^2(G_2)} \left(\sum_{m=1}^{n+1} \left| \frac{F_n'(1/z)}{m} \right|^2 \right)^{1/2} \]
\[= |f(z) - P_n^*(1/z)| + \frac{c_5}{\sqrt{\pi(1 - k^2)}} E_n(f, G_2) \left(\sum_{m=1}^{n+1} \frac{F_n'(1/z)^2}{m} \right)^{1/2} \]
for all natural numbers n. This shows that

\[|f(z) - S_n(f, 1/z)|^2 \leq 2 |f(z) - P_n^*(1/z)|^2 + \frac{2c_5}{\pi(1 - k^2)} E_n^2(f, G_2) \sum_{m=1}^{n+1} \frac{F_n'(1/z)^2}{m}. \]
Multiplying both sides by $1/|z|^4$ and take into account that $1/|z|^4 \leq c_6$ for $z \in G_2$ and with a constant c_6, we get

$$|f(z) - S_n(f,1/z)|^2 \frac{1}{|z|^4} \leq c_7 |f(z) - P_n^*(1/z)|^2 + \frac{c_8}{\pi(1-k^2)} E_n^2(f,G_2) \sum_{m=1}^{n+1} \frac{|F_{m,z}^*(1/z)|^2}{m}.$$

Now, by integrating both sides over G_2 and by virtue of Lemma 2 we get

$$\|f(z) - S_n(f,\cdot)\|_{A^2(G_2,\omega)}^2 \leq c_7 E_n^2(f,G_2) + \frac{c_8}{\pi(1-k^2)} E_n^2(f,G_2) \sum_{m=1}^{n+1} \frac{\|F_{m,z}^*(1/z)\|_{A^2(G_2)}^2}{m}$$

i.e.,

$$\|f(z) - S_n(f,\cdot)\|_{A^2(G_2,\omega)} \leq \left(c_7 + \frac{c_8(n+1)}{1-k^2} \right) E_n^2(f,G_2)$$

for all natural numbers n.

References

Daniyal M. Israfilov
Department of Mathematics
Faculty of Art and Sciences
Balikesir University
10100 Balikesir
TURKEY
mdaniyal@balikesir.edu.tr

Yunus E. Yildirir
Department of Mathematics
Faculty of Art and Sciences
Balikesir University
10100 Balikesir
TURKEY
yildirir@balikesir.edu.tr