A NEW METHOD OF CONSTRUCTING MAXIMAL PARTIAL SPREADS OF $PG(3, q)$, MAPPING $PG(3, q)$ OVER A NON-SINGULAR QUADRICAL $Q(4, q)$ OF $PG(4, q)$

SANDRO RAJOLA AND MARIA SCAFATI TALLINI

(Received June 2004)

Abstract. We transfer the whole geometry of $PG(3, q)$ over a non-singular quadric $Q(4, q)$ of $PG(4, q)$ mapping suitably $PG(3, q)$ over $Q(4, q)$. More precisely the points of $PG(3, q)$ are the lines of $Q(4, q)$; the lines of $PG(3, q)$ are the tangent cones of $Q(4, q)$ and the reguli of the hyperbolic quadrics hyperplane section of $Q(4, q)$. A plane of $PG(3, q)$ is the set of lines of $Q(4, q)$ meeting a fixed line of $Q(4, q)$. We remark that this representation is valid also for a projective space P^3, K over any field K and we apply the above representation to construct maximal partial spreads F in $PG(3, q)$. For q even we get new cardinalities for F. For q odd the cardinalities are partially known.

1. Introduction

Using a mapping of $PG(4, q)$ over the non-singular quadric $Q(4, q)$, we construct maximal partial spreads F of $PG(3, q)$ with

$|F| = q^2 - q + 2$, q odd, and $q > 3$;

$|F| = q^2 - q + 1$, q even, $q \geq 8$, $n \in \mathbb{N}, n < \min \left\{ \frac{q-1}{4}, \frac{1+\sqrt{2q-1}}{2} \right\}$;

$|F| = q^2 - 2nq + 2n + 1$, q odd, $q \geq 7$, $n < \min \left\{ \frac{q-1}{4}, \frac{1+\sqrt{8q-7}}{4} \right\}$.

The cardinalities $|F| = q^2 - q + 2$ and $|F| = q^2 - q + 1$ are known in the literature, but here the spreads are obtained in a different way. In particular A. Bruen [6], Theorem 17.6.9, obtained the cardinality $|F| = q^2 - q + 2$, q odd and $q > 3$, but his construction is rather complicated.

2. The Mapping of $PG(3, q)$ Over $Q(4, q)$

Let $Q^+(5, q)$ be the Klein quadric of $PG(5, q)$. Let $Q(4, q)$ be the non-singular quadric hyperplane section of $Q^+(5, q)$, $Q(4, q) = Q^+(5, q) \cap S_4$, where S_4 is a hyperplane of $PG(5, q)$.

Let L be the set of lines of $Q(4, q)$. We call linear complex of $PG(3, q)$ a set of lines whose Plücker coordinates $P_{i\bar{j}}$, $i, j = 0, 1, 2, 3$, $i < j$, satisfy a linear equation, that is a hyperplane section of the Klein quadric. A general linear complex \mathcal{C} is represented by the linear equation

$$\sum_{i<j} a_{ij} P_{i\bar{j}} = 0,$$
where } det |a_{ij}| \neq 0, a_{ij} = -a_{ji}, a_{ii} = 0, a_{ij} \in GF(q). \text{ The points of } Q(4,q) \text{ represent therefore the lines of a general linear complex } C \text{ of } PG(3,q).

Let } \psi \text{ be the Klein mapping, that is the bijection which sends a line } r \text{ of } PG(3,q) \text{ to a point of } Q^+(5,q),

\begin{align*}
\psi : r & \rightarrow (P_{ij}) \in Q^+(5,q), \ i < j.
\end{align*}

The general linear complex } C \text{ determines the null polarity } f \text{ of } PG(3,q) \text{ which associates a point } X = (x_0, x_1, x_2, x_3) \text{ of } PG(3,q) \text{ with its polar plane } f(X) \text{ with equation}

\begin{align*}
\sum_{i=0}^{3} \left(\sum_{j=0}^{3} a_{ij} x_j \right) x_i = 0.
\end{align*}

Now let } x \text{ be a point of } PG(3,q) \text{ and } F_x \text{ the pencil of lines of } C \text{ through } x: \text{ the set } \psi(F_x) \text{ is a line } s \text{ of } Q(4,q). \text{ Let } \varphi \text{ be the following bijection:}

\begin{align*}
\varphi : x \in PG(3,q) & \rightarrow s \in \mathcal{L}.
\end{align*}

So } \varphi \text{ sends the points of } PG(3,q) \text{ to the lines of } Q(4,q).

Now let us represent the lines of } PG(3,q) \text{ over } Q(4,q). \text{ To do this, first we consider the lines of } C. \text{ Let } r \text{ be a line of } C \text{ and let } x_1, x_2, \ldots, x_{q+1} \text{ be the points of } r. \text{ The lines } \varphi(x_1), \varphi(x_2), \ldots, \varphi(x_{q+1}) \text{ of } Q(4,q) \text{ are distinct and pass trough the point } \psi(r). \text{ Therefore } \varphi(r) \text{ is the tangent cone to } Q(4,q) \text{ at its vertex } \psi(r). \text{ It follows that } \varphi \text{ sends the lines of } C \text{ to the tangent cones of } Q(4,q). \text{ Therefore}

\begin{align*}
|C| = |Q(4,q)| = \theta_4 = q^3 + q^2 + q + 1.
\end{align*}

Now let } r \text{ be a line of } PG(3,q). \text{ The line } r', \text{ polar of } r \text{ under } f, \text{ is the axis of the pencil of polar planes of the points of } r. \text{ It follows that the polar of a line } r \in C \text{ coincides with } r.

Now, let us consider a line } r \text{ of } PG(3,q), \ r \notin C, \text{ whose polar is } r'. \text{ Obviously } r \cap r' = \emptyset. \text{ Let } x_1, x_2, \ldots, x_{q+1} \text{ be the points of } r \text{ and let } x'_1, x'_2, \ldots, x'_{q+1} \text{ be the points of } r'. \text{ The lines } \varphi(x_1), \varphi(x_2), \ldots, \varphi(x_{q+1}) \text{ are mutually disjoint. Every line } \varphi(x'_j), \ j = 1, \ldots, q+1, \text{ meets all the lines } \varphi(x_1), \varphi(x_2), \ldots, \varphi(x_{q+1}). \text{ The hyperplane } S_3 \text{ of } S_4 \text{ through } \varphi(x_1) \text{ and } \varphi(x_2), \text{ contains all the lines } \varphi(x'_1) \text{ and all the lines } \varphi(x_j), \ j = 1, \ldots, q+1. \text{ It follows that } S_3 \text{ meets } Q(4,q) \text{ at a hyperbolic quadric } Q(3,q).

We call regulus of } Q(4,q) \text{ a regulus of a hyperbolic quadric hyperplane section of } Q(4,q). \text{ Therefore the lines } \varphi(x_1), \varphi(x_2), \ldots, \varphi(x_{q+1}) \text{ and the lines } \varphi(x'_1), \varphi(x'_2), \ldots, \varphi(x'_{q+1}) \text{ are reguli of } Q(4,q). \text{ So } \varphi \text{ sends the lines of } PG(3,q) \text{ not belonging to } C \text{ to the reguli of } Q(4,q).

So the following Theorem holds.

Theorem 1. The Galois space } PG(3,q) \text{ is mapped over } Q(4,q) \text{ as follows:}

- The points of } PG(3,q) \text{ are the lines of } Q(4,q).
- The lines of } PG(3,q) \text{ are the tangent cones and the reguli of } Q(4,q).
- A plane } \pi \text{ of } PG(3,q) \text{ is the set of lines of } Q(4,q) \text{ meeting a fixed line of } Q(4,q).

More precisely the tangent cones of } Q(4,q) \text{ represent the lines of a general linear complex } C \text{ of } PG(3,q), \text{ and the other lines of } PG(3,q) \text{ are the reguli of } Q(4,q). \text{ A plane } \pi \text{ of } PG(3,q) \text{ is represented by the lines of } Q(4,q) \text{ meeting a fixed line of } Q(4,q), \text{ which is the pole of } \pi \text{ in } PG(3,q) \text{ with respect to the null polarity determined by } C.
In other words the correspondence ϕ between \(PG(3, q) \) and the set of lines of \(Q(4, q) \) uses the symplectic polarity \(η \) of \(PG(3, q) \) and the Klein correspondence between the lines of \(PG(3, q) \) and the set of points of the hyperbolic quadric \(Q^+(5, q) \).

Let \(η \) be a symplectic polarity. Then the totally isotropic lines of \(η \) are mapped by the Klein correspondence to the points of a particular parabolic quadric \(Q(4, q) \) of \(Q^+(5, q) \). These points can be identified with their tangent cones to \(Q(4, q) \). The lines \(L \) of \(PG(3, q) \) which are not totally isotropic with respect to \(η \) have a polar line \(L^η \) with respect to \(η \). It is a known fact that \(L \) and \(L^η \) can be made to correspond to a 3-dimensional hyperbolic quadric of \(Q(4, q) \).

3. The Non-singular Quadric \(Q(4, q) \) of \(PG(4, q) \)

Let \(Q(4, q) \) be a non-singular quadric of \(PG(4, q) \). If \(P \in Q(4, q) \), we denote by \(Γ_P \) the tangent cone at \(P \) to \(Q(4, q) \). \(Γ_P = S_1 \cap Q(4, q) \), where \(S_1 \) is the tangent hyperplane at \(P \) to \(Q(4, q) \). A hyperplane of \(PG(4, q) \) meets \(Q(4, q) \) either in an elliptic quadric \(E \), or in a cone \(Γ_P \), or in a hyperbolic quadric \(I \).

We get:

\[
|E| = q^2 + 1, \quad |Γ_P| = q^2 + q + 1, \quad |I| = q^2 + 2q + 1.
\]

It is easy to prove that the following Lemmas hold:

Lemma 1. The set \(I \cap Γ_P \), with \(P \notin I \) is a non-singular conic.

Lemma 2. Let \(I_1 \) and \(I_2 \) be two hyperbolic quadrics, hyperplane sections of \(Q(4, q) \). Then either \(I_1 \cap I_2 \) is a conic consisting of two distinct lines, or it is a non-singular conic.

Lemma 3. The set \(Γ_P \cap E \), \(P \notin E \) is a non-singular conic.

Lemma 4. The set \(E \cap I \) is a non-singular conic.

Lemma 5. The set \(Γ_P \cap Γ_Q \), \(Q \notin Γ_P \) is a non-singular conic.

Theorem 2 (Tallini theorem). Let \(α \) be a plane of \(PG(4, q) \) meeting \(Q(4, q) \) at a non-singular conic. Let \(q \) be odd. If the line \(r \), polar of \(α \) with respect to \(Q(4, q) \), is external to \(Q(4, q) \), we have \((q + 1)/2\) hyperplanes through \(α \) meeting \(Q(4, q) \) at elliptic quadrics and \((q + 1)/2\) hyperplanes through \(α \) meeting \(Q(4, q) \) at hyperbolic quadrics. If \(r \) is a secant of \(Q(4, q) \), through \(α \) there are two tangent hyperplanes to \(Q(4, q) \), \((q - 1)/2\) hyperplanes meeting \(Q(4, q) \) at an elliptic quadric and \((q - 1)/2\) hyperplanes meeting \(Q(4, q) \) at a hyperbolic quadric. Let \(q \) be even. If the plane \(α \) does not contain the nucleus \(N \) of \(Q(4, q) \), the hyperplane joining \(α \) and \(N \) is tangent to \(Q(4, q) \). There are \(q/2 \) hyperplanes through \(α \) meeting \(Q(4, q) \) at elliptic quadrics and \(q/2 \) at hyperbolic quadrics. If \(N \in α \) every hyperplane through \(α \) is tangent to \(Q(4, q) \).

Let \(I \) resp. \(E \) be the set of all hyperbolic resp. elliptic quadrics which can be obtained as the sections \(S_2 \cap Q(4, q) \) of a hyperplane \(S_3 \) with the quadric \(Q(4, q) \).

Let:

\[
Γ := \{Γ_P = T_P \cap Q(4, q) | P \in Q(4, q)\},
\]

\(T_P \) tangent hyperplane in \(P \), be the set of all tangent cones. For \(I \in I \), let \(I_1 \) and \(I_2 \) be the two reguli of \(I \), i.e. for \(i \in \{1, 2\} I_i \) is a set of lines contained in \(I \), which partitions the points of \(I \) and let \(T_I := \{I_1, I_2 | I \in I\} \) be the set of all reguli.
For $\Gamma_P \in \Gamma$, let Γ'_P be the set of all lines contained in Γ_P. Now let \mathcal{C} be a non-singular conic plane section of $Q(4, q)$.

Then we set:

$$F_h(\mathcal{C}) := \{ I_i | i \in \{1, 2\} : \mathcal{C} \subseteq I \},$$

$$F_\gamma(\mathcal{C}) := \{ \Gamma'_P | \Gamma_P \in \Gamma : \mathcal{C} \subseteq \Gamma'_P \},$$

and

$$F(\mathcal{C}) = F_h(\mathcal{C}) \cup F_\gamma(\mathcal{C}).$$

From Tallini Theorem it follows that $|F(\mathcal{C})| = q + 1$.

4. Known Results About Partial Spreads in $PG(3, q)$

A line partial spread of $PG(3, q)$ is a set \mathfrak{F} of lines mutually disjoint. The partial spread \mathfrak{F} is called spread if \mathfrak{F} is a covering of $PG(3, q)$.

Obviously

$$\mathfrak{F} \text{ spread } \iff |\mathfrak{F}| = q^2 + 1.$$

The partial spread \mathfrak{F} is maximal if it is not properly contained in another partial spread.

Maximal partial spreads have been investigated since a long time by several Authors, but a complete knowledge of them is far from being complete.

The known results about them are in [3], [4], [5], [9], [10] and are summarized in the following

Theorem 3. A maximal partial line spread of $PG(3, q)$ of cardinality r exist in the following cases:

- $q \geq 7$, q odd \Rightarrow $q \equiv 1, 7, 9, 13, 15, 21 \mod 24$, $\frac{q^2 + 7}{2} \leq r \leq q^2 - q + 2$;
- $q \geq 7$, q odd \Rightarrow $q \equiv 3 \mod 4$, $\frac{5q^2 + 4q - 1}{8} \leq r \leq q^2 - q + 2$;
- $q \geq 7$, q odd \Rightarrow $q \equiv 1, 7, 9, 13, 15, 21 \mod 24$, $\frac{q^2 + 7}{2} \leq r \leq q^2 - q + 2$;
- $q \geq 4$ \Rightarrow $r = q^2 - q + 2$;
- $q > 2$ \Rightarrow $r = q^2 - q + 1$;
- $\gcd(q + 1, 3) = 1$ \Rightarrow $r = \frac{q^2 + q + 2}{2}$;
- $\gcd(q + 1, 12) = 2$ \Rightarrow $r = \frac{q^2 + 3}{2}$;
- $\gcd(q + 1, 24) = 4$ \Rightarrow $r = \frac{q^2 + 5}{2}$;
- $q = 4$ \Rightarrow $r = 11, 12, 13, 14$;
- $q = 5$ \Rightarrow $15 \leq r \leq 21$;
- $q = 7$ \Rightarrow $23 \leq r \leq 45$;

O. Heden [2], [3], [4], [5] found an example of a maximal partial spread \mathfrak{F}, with $|\mathfrak{F}| = 45$ $> q^2 - q + 2 = 44$;

- $q = 11$ \Rightarrow $58 \leq r \leq 67$;
- $\forall q$, $r = q^2 + 1 - nq$, $0 < n \leq \frac{1}{2}q - 1$ [1].
5. New Examples of Maximal Partial Spreads of $PG(3,q)$

The map φ of sect. 2 allows us to construct maximal partial spreads \mathfrak{F} of $PG(3,q)$, as follows.

Example 1. Let I be a hyperbolic quadric, hyperplane section of $Q(4,q)$ of $PG(4,q)$, q odd, $q > 3$, $I = S_3 \cap Q(4,q)$, S_3 a hyperplane of $PG(4,q)$. Let π be a plane of S_3 meeting I at a non-singular conic C. Let A and B be two distinct points of C. Let R_1 and R_2 be the reguli of I through A and B respectively. Let s_A and s_B be the lines of R_2 through A and B respectively. The lines s_A and s_B meet at a point C. Similarly the lines s_A and s_B meet at a point D. The points A, B, C, D are distinct and $C, D \notin \pi$. Let $H = \pi \cap CD$. We get $H \notin C$.

The pair (C, D) is called associated pair with the pair (A, B), since q is odd, there is a line t of π through H external to C (if q is even, H is the nucleus of C, and every line of π through H is tangent to C). The planes of S_3 through t are π, the plane π' through DC and $q - 1$ planes $\pi_1, \pi_2, \ldots, \pi_{q-1}$. They meet I at non singular conics.

Set $C_i = \pi_i \cap I$, $i = 1, \ldots, q - 1$. Let \mathfrak{F} be the following set of tangent cones and reguli of $Q(4,q)$:

$$\mathfrak{F} = \{\Gamma_C, \Gamma_D, \Gamma_X, X \in C - \{A, B\}\} \bigcup \bigcup_{i=1}^{q-1} (F(C_i) - \{R_1, R_2\})$$

By means of Theorem 1 we identify $PG(3,q)$ with defined structure on $Q(4,q)$. So \mathcal{F} can be considered a set of lines of $PG(3,q)$.

We prove that \mathfrak{F} is a partial spread of $PG(3,q)$. First we remark that if $\Gamma_{V'}$ and $\Gamma_{V''}$ are two distinct tangent cones of $Q(4,q)$, $V' \neq V''$, $V' \in I$, $V'' \in I$, having a common line, then the line $V'V'' \subseteq I$. From this it follows that the cones $\Gamma_C, \Gamma_D, \Gamma_X, X \in C - \{A, B\}$, have no common line. Obviously two elements of $F(C_i) - \{R_1, R_2\}$, $i = 1, \ldots, q - 1$, have no common line too. Moreover if $\mathcal{G} \in F(C_i) - \{R_1, R_2\}$ and $\mathcal{G}' \in F(C_j) - \{R_1, R_2\}$, $i \neq j$, $i, j = 1, \ldots, q - 1$, \mathcal{G} and \mathcal{G}' have no common line. It follows that the cones and the reguli of

$$\bigcup_{i=1}^{q-1} (F(C_i) - \{R_1, R_2\})$$

have no common line. Obviously, a cone of the set

$$\{\Gamma_C, \Gamma_D, \Gamma_X, X \in C - \{A, B\}\}$$

and an element of

$$\bigcup_{i=1}^{q-1} (F(C_i) - \{R_1, R_2\})$$

have no common line. This proves that \mathfrak{F} is a partial spread of $PG(3,q)$. Let us prove that \mathfrak{F} is maximal. This means that every line of $PG(3,q)$ meets a line of \mathfrak{F}. This is equivalent to prove that every regulus and every tangent cone of $Q(4,q)$ has a line in common with either a regulus or a tangent cone of \mathfrak{F}.

First we prove that every tangent cone Γ_Y of $Q(4,q)$, $Y \in Q(4,q)$, has a line
in common with either a cone, or a regulus of \mathfrak{H}. This is obvious if $Y \in \mathcal{E} = \mathcal{C} \cup r_A \cup r_B \cup s_A \cup s_B$. If $Y \in I - \mathcal{E}$, let v be a line of I through Y. If $v \in R_1$, then the line v meets \mathcal{C} at a point M, with $M \neq A, B$. Therefore Γ_Y and Γ_M, $\Gamma_M \in \mathfrak{H}$, have the line v in common. The same happens, if $v \in R_2$. Now let $Y \notin I$. The cone Γ_Y meets I at a non-singular conic \mathcal{C}, by Lemma 1. Let π be the plane of S_3 through \mathcal{C}. If π contains the line t (the line of π through H external to C), then

$$\mathcal{C} \in \mathcal{U} = \{\mathcal{C}, \mathcal{C}' = \pi' \cap I, C_i, i = 1, \ldots, q - 1\}.$$

If $\mathcal{C} = \mathcal{C}'$, the cone Γ_Y has a line in common with every cone Γ_X, $X \in \mathcal{C} - \{A, B\}$. If $\mathcal{C} = \mathcal{C}'$, the cone Γ_Y has a line in common with both Γ_C and Γ_D. If $\mathcal{C} = \mathcal{C}_i$, $1 \leq i \leq q - 1$, the cone Γ_Y belongs to \mathfrak{H}. If the plane π does not contain t, then $\mathcal{C} \notin \mathcal{U}$ and \mathcal{C} has a point Z in common with a conic \mathcal{C}_i, $1 \leq i \leq q - 1$, since $|\mathcal{C} \cap \mathcal{C}| \leq 2$, $|\mathcal{C} \cap \mathcal{C}'| \leq 2$, $q > 3$, and \mathcal{U} is a partition of I. Then obviously there is an element of $F(C_i) - \{R_1, R_2\}$ containing the line of Γ_Y through Z.

Secondly, let us prove that every regulus of $Q(4, q)$ has a line in common with either a cone, or a regulus of $Q(4, q)$ of \mathfrak{H}. Let \mathcal{R} be a regulus of $Q(4, q)$ and let $I_{\mathcal{R}}$ be the hyperbolic quadric, hyperplane section of $Q(4, q)$, containing the regulus \mathcal{R}. By Lemma 2, we get $I_{\mathcal{R}} \cap I = \mathcal{C}'$, where \mathcal{C}' is either a singular conic consisting of two distinct lines, or it is non-singular. If \mathcal{C}' is singular, then a line of \mathcal{C}' is a line z of \mathcal{R}. Obviously z belongs to one of the cones Γ_C, Γ_D, Γ_X, $X \in \mathcal{C} - \{A, B\}$. If \mathcal{C}' is non-singular, we prove that \mathcal{R} has a line in common with some element of \mathfrak{H}. The proof is the same as in the case of the cone Γ_Y, $Y \notin I$. Therefore \mathfrak{H} is a maximal spread of $PG(3, q)$. By the previous construction we get:

$$|\mathfrak{H}| = q^2 - q + 2.$$

This example has the same cardinality of the example constructed by Bruen [6], Theorem 17.6.9. Our construction is simpler.

Example 2. Let E be an elliptic quadric, hyperplane section of $Q(4, q)$, $E = S_3 \cap Q(4, q)$, S_3 a hyperplane of $PG(4, q)$. Let X be a point of $Q(4, q) - E$ and let Γ_X be the tangent cone to $Q(4, q)$ with vertex X. The set $\Gamma_X \cap E$ is a non-singular conic \mathcal{C}, by Lemma 3. Let ℓ be a line of Γ_X and let $L = \ell \cap E$. Let Y be a point of $E - \{L, X\}$ and let Γ_Y be the tangent cone to $Q(4, q)$ with vertex Y. The cone Γ_Y meets E at a non-singular conic \mathcal{C}'. Obviously, we have $L \in \mathcal{C}'$, $\Gamma_X \cap \Gamma_Y = \ell$. It follows that $\mathcal{C} \neq \mathcal{C}'$, $\mathcal{C} \cap \mathcal{C}' = \{L\}$. Let us consider the set:

$$\mathfrak{H}' = |F(\mathcal{C}) - \Gamma_X| \cup \{\Gamma_Y\} \cup \{\Gamma_Z, Z \in E - \mathcal{C} \cup \mathcal{C}'\}.$$

Obviously the elements of $F(\mathcal{C}) - \Gamma_X$ have no line in common. It easy to prove that an element of $F(\mathcal{C}) - \Gamma_X$ has no line in common with Γ_Y. Therefore the set $\mathcal{A} = |F(\mathcal{C}) - \Gamma_X| \cup \{\Gamma_Y\}$ consists of elements pairwise without line in common. The cones of the set

$$\mathcal{B} = \{\Gamma_Z, Z \in E - \mathcal{C} \cup \mathcal{C}'\}$$

have no line in common. Moreover an element of \mathcal{A} and an element of \mathcal{B} have no line in common. It follows that \mathfrak{H}' is a partial spread of $PG(3, q)$. As we proved in the Example 1, we prove that \mathfrak{H}' is maximal. We get:

$$|\mathfrak{H}'| = q^2 - q + 1.$$
This example has the same cardinality of the example constructed by Beutelspacher [1], but our construction is different.

Example 3. Let \(\pi_q, q\) odd, be a projective plane. Let \(\mathcal{C}\) be a \((q + 1)\)-arc and let \(K\) be a set of \(\pi_q\) satisfying the following conditions:

a) \(K \cap \mathcal{C} = \emptyset\),

b) every external line to \(\mathcal{C}\) meets \(K\).

Let \(m\) be the number of pairs consisting of a point \(P \in K\) and a line external to \(\mathcal{C}\) through \(P\). We have \(m \geq (q^2 - q)/2\), since \((q^2 - q)/2\) is the number of the external lines to \(\mathcal{C}\). Moreover is easy to prove that \(m \leq |K| \cdot (q + 1)/2\). It follows that \((q^2 - q)/2 \leq |K| \cdot (q + 1)/2\), and therefore

\[|K| \geq q - 2 + \frac{2}{q + 1}.\]

Therefore \(|K| \geq q - 1\) and the following theorem holds:

Theorem 4. In \(\pi_q, q\) odd, let \(\mathcal{C}\) be a \((q + 1)\)-arc. If \(K\) is a set of \(\pi_q\) satisfying a) and b), we get \(|K| \geq q - 1\).

Let \(Q(4, q)\) be a non-singular quadric of \(PG(4, q)\) and let \(I\) be the hyperbolic quadric, hyperplane section of \(Q(4, q)\), \(I = S_H \cap Q(4, q)\), \(S_H\) a hyperplane of \(PG(4, q)\). Let \(\pi\) be a plane of \(S_H\) meeting \(I\) at a non-singular conic \(\mathcal{C}\). Let \(n\) be a positive integer, with \(2n \leq q + 1\). Let \(A_1, A_2, \ldots, A_n, B_1, B_2, \ldots, B_n\) be \(2n\) distinct points of \(\mathcal{C}\). We associate the pair \((A_i, B_i)\), \(1 \leq i \leq n\), with the pair \((C_i, D_i)\) as follows. Denote by \(r_{A_i}\) and \(s_{A_i}\), the two lines of \(I\) through \(A_i\) and by \(r_{B_i}\) and \(s_{B_i}\), the two lines of \(I\) through \(B_i\). The lines \(r_{A_i}\) and \(r_{B_i}\) belong to the same regulus and similarly \(s_{A_i}\) and \(s_{B_i}\). We set \(C_i = r_{A_i} \cap s_{B_i}\), \(D_i = r_{B_i} \cap s_{A_i}\). Let \(H_i = C_i \cup D_i \cup \pi\). Let \(\mathcal{B} = \{C_1, C_2, \ldots, C_n, D_1, D_2, \ldots, D_n\}\). Let \(\mathcal{D}\) be the set of lines joining two distinct points of \(\mathcal{B}\). Obviously we get \(|\mathcal{D}| = \binom{2n}{2}\). Every line of \(\mathcal{D}\) meets \(\pi\) at a point outside \(\mathcal{C}\). Assume \(q\) odd and \(n < \min\{(q - 1)/4, (1 + \sqrt{8q - 7})/4\}\). It follows that \(q \geq 7\). Let \(K\) be the set consisting of the points common to \(\pi\) and the lines of \(\mathcal{D}\). Obviously we have \(K \cap \mathcal{C} = \emptyset\), and \(|K| \leq |\mathcal{D}| = \binom{2n}{2}\). It follows \(|K| \leq \frac{q^2 - 2q}{2} < q - 1\). By Theorem 4, it follows that there is a line \(\ell\) of \(\pi\) external to \(\mathcal{C}\) such that \(\ell \cap K = \emptyset\). The planes \(\pi_{C_1}, \pi_{C_2}, \ldots, \pi_{C_n}, \pi_{D_1}, \pi_{D_2}, \ldots, \pi_{D_n}\), joining the line \(\ell\) with the points \(C_1, C_2, \ldots, C_n, D_1, D_2, \ldots, D_n\), are distinct, since \(\ell \cap K = \emptyset\). The planes of \(S_H\) through \(\ell\) are \(\pi, \pi_{C_1}, \pi_{C_2}, \ldots, \pi_{C_n}, \pi_{D_1}, \pi_{D_2}, \ldots, \pi_{D_n}\), and other \(q - 2n\) planes \(\pi_{\alpha}, \pi_{\beta}, \ldots, \pi_{\gamma - 2n}\), meeting \(I\) at a non-singular conic. Let \(C_i = \pi_i \cap \mathcal{I}, i = 1, \ldots, q - 2n\). Since \(n < \frac{q - 1}{2}\), it follows that a non-singular conic plane section of \(I\) with a plane different from \(\pi, \pi_{C_1}, \pi_{C_2}, \ldots, \pi_{C_n}, \pi_{D_1}, \pi_{D_2}, \ldots, \pi_{D_n}\), contains a point of \(\bigcup_{i=1}^{q-2n} C_i\). Let \(\mathcal{F}'\) be the following set:

\[
\mathcal{F}' = \left\{ \Gamma_{C_1}, \ldots, \Gamma_{C_n}, \Gamma_{D_1}, \ldots, \Gamma_{D_n}, \Gamma_X, X \in \mathcal{C} - \{A_1, \ldots, A_n, B_1, \ldots, B_n\} \right\} \cup \left\{ \bigcup_{i=1}^{q-2n} (F(C_i) - \{R_1, R_2\}) \right\}.
\]

As in the previous examples we prove that the set \(\mathcal{F}'\) is a maximal partial spread of \(PG(3, q)\), with \(|\mathcal{F}'| = q^2 - 2qn + 2n + 1\).

Example 4. In \(\pi_q, q\) even, let \(\mathcal{C}\) be a \((q + 1)\)-arc and let \(N\) be its nucleus. Let \(K'\) be a set of \(\pi_q\) satisfying the following conditions:
a') $K' \cap \mathcal{C} = \emptyset$,

b') $N \in K'$,

c') every external line to \mathcal{C}' meets K'.

Let m be the number of pairs consisting of a point $P \in K'$ and a line external to \mathcal{C}' through P. We have $m \geq (q^2 - q)/2$, since this is the number of the external lines to \mathcal{C}'. Obviously, we get

$$m = (|K'| - 1) \frac{q}{2}.$$

It follows that $|K'| \geq q$ and the following theorem holds.

Theorem 5. In π_q, q even, let \mathcal{C}' be a $(q+1)$-arc and let N be its nucleus. If K' is a set of π_q satisfying $a')$, $b')$, $c')$, we have $|K'| \geq q$.

Following the notations of Example 3, assume q even, $n < \min\{(q-1)/4, (1 + \sqrt{2q-1})/2\}$. It follows that $q \geq 8$. It is easy to prove that all the lines $C_i D_i$, $i = 1, \ldots, n$, contain the nucleus N of \mathcal{C}'. Obviously a line $u \in D$, different from $C_i D_i$, $i = 1, \ldots, n$, does not contain N. Then the set K' consisting of the points common to the lines of D and π, $K' := \{d \cap \pi \mid d \in D\}$, is such that $N \in K'$ and $K' \cap \mathcal{C}' = \emptyset$. Since there are n lines of D through N, it follows that $|K'| \leq (\frac{q}{2^n}) - n + 1$. From this and from $n < (1 + \sqrt{2q-1})/2$ it follows

$$|K'| < q.$$

By Theorem 5 we get that there is a line ℓ of π external to \mathcal{C}' such that $\ell \cap K' = \emptyset$. The planes $\pi_{C_1}, \pi_{C_2}, \ldots, \pi_{C_n}, \pi_{D_1}, \pi_{D_2}, \ldots, \pi_{D_n}$ spanned by ℓ and the points $C_1, \ldots, C_n, D_1, \ldots, D_n$ respectively, are distinct, since $\ell \cap K' = \emptyset$. We consider the following line set:

$$\mathfrak{S}''' = \{ \Gamma_{C_1}, \ldots, \Gamma_{C_n}, \Gamma_{D_1}, \ldots, \Gamma_{D_n}, \Gamma_X, X \in \mathcal{C}' - \{A_1, \ldots, A_n, B_1, \ldots, B_n\} \} \cup$$

$$\bigcup_{i=1}^{\frac{q-2}{2}} \{ F(C'_i) - \{ R_1, R_2 \} \}, C'_i = \pi_i \cap I, i = 1, \ldots, q - 2n.$$

As in the Example 3, we prove that \mathfrak{S}''' is a maximal partial spread of $PG(3, q)$, with

$$|\mathfrak{S}'''| = q^2 - 2nq + 2n + 1.$$

This cardinality is quite new and therefore gives rise to new maximal partial spreads of $PG(3, q)$.

References

Sandro Rajola
Dipartimento di Matematica
Università degli Studi di Roma “La Sapienza”
Piazzale Aldo Moro, 2
00185 Roma
ITALY

Maria Scafati Tallini
Dipartimento di Matematica
Università degli Studi di Roma “La Sapienza”
Piazzale Aldo Moro, 2
00185 Roma
ITALY
tallini@mat.uniroma1.it