ON PL-ABSOLUTE TOTAL CURVATURE OF 2-KNOTS

TSUKASA YASHIRO

(Received November 2006)

Abstract. The PL-absolute total curvature of an m-manifold in n-space is defined as half of the average number of critical points with respect to unit vectors in n-space. We give a lower bound of the PL-absolute total curvature of a 2-knot.

1. Introduction

A knot is an oriented circle S^1 embedded in \mathbb{R}^3. A surface-knot is an oriented closed connected surface embedded in \mathbb{R}^4. A surface-knot F is trivial if it bounds a handlebody in \mathbb{R}^4. A genus-zero surface-knot F is called a 2-knot.

J. Milnor [6] studied the total curvature of a closed curve C embedded in \mathbb{R}^n. He proved that for a knot K, the total curvature of K exceeds 4π. Here 4π can be interpreted as the volume of S^2.

T. Homma [5] defined the PL-absolute total curvature of an m-manifold M nicely embedded in \mathbb{R}^n denoted by $\tau(M)$. He proved that if $\tau(M) = 1$, then M is the boundary of a convex $(m+1)$-dimensional polygon W embedded in \mathbb{R}^n. This implies that if F is a non-trivial 2-knot, then $1 < \tau(F)$. Here 1 may be interpreted as one unit of the volume of S^3. This is a generalisation of Milnor’s result above.

Let $N(F)$ denote a tubular neighbourhood of a surface-knot F in \mathbb{R}^4. The surface-knot group of F is the fundamental group $\pi_1(\mathbb{R}^4 \setminus N(F))$ denoted by πF.

We obtain a lower bound of the PL-absolute total curvature of a 2-knot with $\pi F \not\cong \mathbb{Z}$.

Theorem 1.1. Let F be a 2-knot with $\pi F \not\cong \mathbb{Z}$. Then

$$3 \leq \tau(F).$$

We will prove this theorem in Section 4.

This paper is organised as follows. In Section 2, we introduce PL-absolute total curvature. In Section 3 we will discuss the normal form of 2-knots. In Section 4 we will prove Theorem 1.1.

The author would like to thank Professors Jiling Cao and Warren Moors for supporting and encouraging him in this research.

1991 Mathematics Subject Classification Primary 57Q45, Secondary 57M45.

Key words and phrases: PL-absolute total curvature, surface-knots, normal forms, 2-knots.
2. **PL-absolute Total Curvature**

In this section we briefly describe the **PL-absolute total curvature of an m-manifold** M embedded in \mathbb{R}^n. Such an m-manifold M is critical at $p \in M$ with respect to $v \in S^{n-1}$, if the intersection of a star-neighbourhood $st(p)$ with the n-dimensional half space $H^+_n(p,v) = \{ q \in \mathbb{R}^n \mid v \cdot pq \geq 0 \}$ or $H^-_n(p,v) = \{ q \in \mathbb{R}^n \mid v \cdot pq \leq 0 \}$ is not an m-disc. If M is critical at p with respect to v, then p will be called a critical point with respect to v. The angle $\hat{\angle}(p,M)$ at $p \in M$ is defined by

$$
\frac{1}{2|n-1|} \omega \{ v \in S^{n-1} \mid M \text{ is critical at } p \text{ with respect to } v \},
$$

(2)

where Γ^{n-1} is the volume of S^{n-1} and ω is the standard measure on S^{n-1}. The PL-absolute total curvature of $M \subset \mathbb{R}^n$ is defined by $\tau(M) := \sum_{p \in M} \hat{\angle}(p,M)$.

For a unit vector $v \in S^{n-1}$, $\mu(M,v)$ denotes the number of critical points of M with respect to v. Then the following holds.

Lemma 2.1 (T. Homma). Let M be an oriented closed m-manifold nicely embedded in \mathbb{R}^n.

$$
\tau(M) = \frac{1}{2|n-1|} \int_{S^{n-1}} \mu(M,v) d\omega,
$$

(3)

where $d\omega$ is the volume element of S^{n-1}, $\mu(v,M)$ is the number of critical points with respect to a vector $v \in S^{n-1}$, and Γ^{n-1} is the volume of S^{n-1}.

Set $\mu_{\min} = \min_{v \in S^{n-1}} \mu(M,v)$. Then the following is an immediate consequence of Lemma 2.1.

Corollary 2.1. Let M be an m-manifold nicely embedded in \mathbb{R}^n.

$$
\frac{1}{2} \mu_{\min} \leq \tau(M).
$$

(4)

Proof. The inequality $\mu_{\min} \leq \mu(M,v)$ holds. This implies the desired inequality. \qed

3. **2-knots in Normal Forms**

We denote the set $\{(x_1,x_2,x_3,t) \mid t \in [a,b]\} \subset \mathbb{R}^4$ by $\mathbb{R}^3[a,b]$. We denote $\mathbb{R}^3[a,a]$ by $\mathbb{R}^3[a]$. Let $v \in \mathbb{S}^3$. Let \mathbb{R}_v denote the line generated by v. Define $\pi_v : \mathbb{R}^4 \rightarrow \mathbb{R}_v$ by $\pi_v(x) = v \cdot x$, where $v \cdot x$ is the inner product. Let F be a surface-knot. After perturbing F, $\pi_v|_F$ can be a Morse function on F.

The following is proved in [4].

Lemma 3.1. Let $v \in \mathbb{S}^3$. Let F be a 2-knot with m_1 maximal points, m_2 minimal points and s saddle points with respect to v. Then F is equivalent to F' such that

(1) F' has the same number of maximal points and minimal points and saddle points as has F with respect to v.

(2) All the minimal points are contained in $\mathbb{R}^3[-2]$.

(3) All the maximal points are contained in $\mathbb{R}^3[2]$.

(4) All the saddle points are contained in $\mathbb{R}^3(-2, 2)$.

A proof can be found in [4].

We slightly modify F by an isotopy deformation so that a critical point at a critical value $t (\pi_v|_F)^{-1}(t)$ is deformed into a disc if the index is 0 or 2 or deformed into a band if the index is 1. We still call the perturbed function a Morse function.

If a band corresponding to a saddle point reduces the number of components, then it is called a fusion (band). If it increases the number of components, then it is called a fission (band).

A normal form for a 2-knot F is an embedding with a projection $\pi_v: \mathbb{R}^4 \to \mathbb{R}_v$ which restricts to a Morse function on F, and satisfies the following conditions.

1. $F \subset \mathbb{R}^3[-2, 2]$
2. The critical values of $\pi_v|_F$ are ± 1 and ± 2, and $(\pi_v|_F)^{-1}(0)$ is a knot; that is, connected.
3. All the minimal discs are in $\mathbb{R}^3[-2]$.
4. All the saddle bands with fusion bands are in $\mathbb{R}^3[-1]$.
5. All the saddle bands with fission bands are in $\mathbb{R}^3[1]$.
6. All the maximal discs are in $\mathbb{R}^3[2]$.

The following are proved in [4].

Lemma 3.2 (Kawauchi-Shibuya-Suzuki). Any 2-knot is equivalent to a 2-knot in a normal form.

Lemma 3.3 (Kawauchi-Shibuya-Suzuki). Let F be a 2-knot. Suppose that F is in a normal form. If $\pi_v|_F^{-1}(0)$ is trivial, then $\pi_F \cong \mathbb{Z}$.

Example 3.1. Let F be Fox-Milnor’s 2-knot. Diagrams in Figure 1 are $\mathbb{R}^3[t] \cap F$ for $t = -1.5, -1, 0, 1, 1.5$, with F in a normal form.

![Figure 1](image-url)
4. Proof of Theorem 1.1

Proof of Theorem 1.1. Let $v \in S^3$. Let F be a 2-knot. The 2-knot F can be deformed in a normal form without changing the number of critical discs.

Let m_1 be the number of local maximal points with respect to v, and let m_2 be the number of local minimal points with respect to v. We claim that $m_1 > 1$ and $m_2 > 1$. Suppose that $m_i = 1$ for $i = 1, 2$. Then in the normal form the component that is the same as $\pi_v|^{-1}(0)$, vanishes at $R^3[2]$ or $R^3[-2]$. Since $\pi F \not\cong \mathbb{Z}$, by Lemma 3.3 $\pi_v|^{-1}(0)$ is not trivial. This means that F is not a locally flat. This is a contradiction. Thus $m_i > 1$ for $i = 1, 2$. This implies that the number of fusion bands is at least one and the number of fission bands is at least one. We can perturb F to F' so that F' has critical points at $t = \pm 1, \pm 2$ with respect to $\pi_v|F'$. Thus the number of critical points of F' is the same as the number of critical discs of F in the normal form. Therefore, for any $v \in S^3$,

$$2 + 1 + 1 + 2 = 6 \leq \mu(F, v).$$

By Corollary 2.1

$$3 \leq \tau(F).$$

By Corollary 2.1

References

Tsukasa Yashiro
Department of Mathematics and Statistics
College of Science
Sultan Qaboos University
P. O. Box 36
P. C. Box 123 Al-Khoud
SULTANATE of OMAN
yashiro@squ.edu.om