A REMARK ON THE DUAL OF BANACH-VALUED TENT SPACES

Martha Guzmán-Partida

(Received 28 March, 2012)

Abstract. We identify the dual of the atomic vector-valued tent space \(\Upsilon^1_{q}(X) \), with an appropriate space of measures with values in \(X^* \), where \(X \) is a real Banach space.

1. Introduction

Much work has been done on the theory of tent spaces, originally studied in [4] and [5]. In those papers, the authors developed a successful theory closely related to that of Hardy spaces on the upper half-space, and very appropriate for the study of maximal functions, square functions and other classical operators in harmonic analysis.

In this paper we restrict our attention to Banach-valued versions of atomic tent spaces, to be precise, those formed by series of \((1,q)\)-atoms where \(1 < q < \infty \), with an adequate notion of convergence.

Our aim in the present note is to give a description of the dual of our atomic tent space \(\Upsilon^1_{q}(X) \), in terms of certain kind of measures with values in \(X^* \), namely, the family of vector-valued measures \(C_{q'}(X^*) \), where \(q' \) is the conjugate exponent of \(q \). The role of this family of measures is very similar to that played by the family of functions \(f \) such that \(C_{q'}(f) \in L^\infty \), studied in [5] but adjusted to our general context.

The proofs given in this paper follow classical ideas and patterns (cf. [2], [8]) with appropriate modifications when it is required. Moreover, no geometrical property on the Banach space \(X \) is assumed to set up the duality.

2. Preliminaries

Let us denote by \(\Omega \) a space of homogeneous type, that is, a topological space endowed with a Borel measure \(\mu \) and a quasi-distance \(d \), such that the family of balls \(B_r(x) \) is a local basis for each \(x \in \Omega \), and moreover, there exists an absolute constant \(C \) satisfying the doubling condition

\[
\mu(B_{2r}(x)) \leq C \mu(B_r(x)).
\]

From this condition we can assume that \(0 < \mu(B) < \infty \) for every ball \(B \), which implies that the measure \(\mu \) is \(\sigma \)-finite.

The letter \(X \) will always denote a real Banach space and \(L^p_X(\Omega, \mu) \), \(1 \leq p < \infty \), will be the space of \(X \)-valued Borel measurable functions \(f \) defined on \(\Omega \) such that

2010 Mathematics Subject Classification 42B35, 46G10.

Key words and phrases: Vector measures, atomic tent spaces.
\[\|f\|_X \in L^p_q(\Omega, \mu). \] By \(L^p_{X,loc}(\Omega, \mu) \) will denote the space of functions \(f \in L^p_{X}(K, \mu) \) for each compact subset \(K \) of \(\Omega \). If there is no place for confusion we will simply write \(L^p_X \) instead of \(L^p_{X}(\Omega, \mu) \), \(L^p_{X,loc} \) instead of \(L^p_{X,loc}(\Omega, \mu) \) and \(L^p \) for \(L^p_{\mathbb{R}}(\Omega, \mu) \).

For \(1 \leq q < \infty \), \(V^q_{X,loc}(\mu) \) will be the space of vector measures \(\nu \) defined on \(\mathcal{B} = \mathcal{B}(\Omega) \), the family of Borel sets of \(\Omega \), with values in \(X \) and finite \(q \)-variation, that is,

\[
\|\nu\|_{V^q_{X,loc}(\mu)} = \sup \left(\sum_{A \in \pi} \|\mu (A)\|_{X}^{q-1} \right)^{1/q} < \infty, \tag{1}
\]

where the supremum is taken over all finite measurable partitions \(\pi \) of \(\Omega \) (with the convention \(\lambda^{n-1} \) equals to 0 or \(\infty \) provided \(\lambda = 0 \) or \(\lambda > 0 \)). We remark that according to [3], Lemma 1, \(\|\nu (A)\|_{X} \) can be replaced by \(|\nu| (A) \) in (1), where \(|\nu| \) denotes the variation of \(\nu \).

If the context is clear, we simply write \(V^q_{X} \). Sometimes, it will be useful to consider a measurable subset \(A \) of \(\Omega \), in which case we will write \(V^q_{X}(A) \).

When \(q > 1 \), it is well known that the dual space of \(L^q_{X} \) is isometrically isomorphic to \(V^q_{X,loc}(\mu) \), being \(q^* \) the conjugate exponent for \(q \) (see [6], [7]).

Now, we shall restrict our attention to the case \(\Omega = \mathbb{R}^{n+1}_+ \), provided with the usual topology and the doubling measure \(d\mu = \frac{dxdt}{t} \). The set \(\mathcal{B}_0 \) will denote the family of bounded Borel sets \(A \subset \mathbb{R}^{n+1}_+ \), hence the \(\sigma \)-algebra generated by \(\mathcal{B}_0 \) coincides with \(\mathcal{B} \). When necessary, we will write \(|\cdot| \) for the Lebesgue measure on the \(n \)-dimensional euclidean space.

Definition 1. For \(1 < q < \infty \), the set \(\mathcal{C}_q(X) \) will denote the space of countably additive vector measures \(\nu : \mathcal{B}_0 \rightarrow X \) satisfying the following conditions:

1. \(\nu \in V^q_{X}(T_\varepsilon(B)) \) for every ball \(B \subset \mathbb{R}^n \) and each \(\varepsilon > 0 \), where

\[
T_\varepsilon(B) = \{(x,t) \in \mathbb{R}^{n+1}_+ : B_t(x) \subset B, \ t > \varepsilon \}.
\]

2. There exists an absolute constant \(C > 0 \) such that for every ball \(B \subset \mathbb{R}^n \) and each \(\varepsilon > 0 \)

\[
\frac{1}{|B|^{1/q}} \|\nu\|_{V^q_{X}(T_\varepsilon(B))} \leq C. \tag{2}
\]

The infimum of the constants \(C \) such that (2) holds is denoted by \(\|\nu\|_{\mathcal{C}_q(X)} \), which is a norm on \(\mathcal{C}_q(X) \).

We notice that every truncated tent \(T_\varepsilon(B) \) is contained in some open ball of \(\mathbb{R}^{n+1}_+ \) whose distance to \(\mathbb{R}^n \) is positive. Moreover, \(\nu \) is absolutely continuous with respect to \(\mu \), i.e., \(\lim_{\mu(A)\rightarrow 0} \nu(A) = 0 \) and thus \(\nu \) is absolutely continuous with respect to the Lebesgue measure on \(\mathbb{R}^{n+1}_+ \).

Another useful remark is the fact that the countably additive vector measure \(\nu \in \mathcal{C}_q(X) \) if and only if \(|\nu| \in \mathcal{C}_q(\mathbb{R}) \). In such case \(\|\nu\|_{\mathcal{C}_q(X)} = \|\nu\|_{\mathcal{C}_q(\mathbb{R})} \). Moreover, since the scalar measure \(|\nu| \) is absolutely continuous with respect to \(\mu \), we can find a non-negative function \(\eta \in L^1_{loc}(\mathbb{R}^{n+1}_+, d\mu) \) such that for each \(E \in \mathcal{B}_0 \) we have

\[
|\nu|(E) = \int_E \eta d\mu. \tag{3}
\]
An elementary example of an element in $C^q(X)$ can be given as follows (cf. [5]).

Let us consider the space of functions $C^q(X) = \left\{ f \in L^q_{X,\text{loc}}(\mathbb{R}^{n+1}, \frac{dxdt}{t}) : \|f\|_{C^q(X)} < \infty \right\}$

where

$$\|f\|_{C^q(X)} = \sup_B \left(\frac{1}{|B|} \int_{T(B)} \|f(x,t)\|_X^q \frac{dxdt}{t} \right)^{1/q} < \infty$$

and the supremum is taken over all balls B on \mathbb{R}^n.

Clearly, $\|\cdot\|_{C^q(X)}$ defines a norm in $C^q(X)$, and if we consider the measure $d\nu(x,t) = f(x,t) dxdt$ with $f \in C^q(X)$, it turns out that for every ball B and each $\varepsilon > 0$

$$\|\nu\|_{V^q_{X}(T_\varepsilon(B))} = \|f\|_{L^q_X(T_\varepsilon(B), \frac{dxdt}{t})} \leq \|f\|_{C^q(X)} |B|^{1/q},$$

that is, $\nu \in C^q(X)$ and $\|\nu\|_{C^q(X)} \leq \|f\|_{C^q(X)}$.

Of course, without any geometric prescription for X, we have only the inclusion $C^q(X) \subset C^q(X)$. Now, we define our vector-valued tent spaces.

Definition 2. Given $1 < q < \infty$, the tent space $T^1_q(X)$ will be the set of measurable functions $f : \mathbb{R}^{n+1} \to X$ such that $A_q(\|f\|_X) \in L^1(\mathbb{R}^n)$, provided with the norm $\|f\|_{T^1_q(X)} = \|A_q(\|f\|_X)\|_1$.

As usual,

$$A_q(\|f\|_X)(x) = \left(\int_{\Gamma(x)} \|f(y,t)\|_X^q \frac{dydt}{t^{n+1}} \right)^{1/q},$$

where $\Gamma(x) = \{(y,t) \in \mathbb{R}^{n+1}_+ : |y-x| < t\}$.

As in the scalar case, we can obtain (see [5], p. 306) for any compact set $K \subset \mathbb{R}^{n+1}_+$

$$\left(\int_K \|f(y,t)\|_X^q \frac{dydt}{t} \right)^{1/q} \leq C(K, q, n) \|A_q(\|f\|_X)\|_1,$$

estimate that allows us to prove that $\left(T^1_q(X), \|\cdot\|_{T^1_q(X)}\right)$ is a Banach space.

Definition 3. A measurable function $a : \mathbb{R}^{n+1}_+ \to X$ is called an (X,q)-atom, or simply an atom in X if the following conditions are satisfied:

1. $\text{supp} \ a \subset T(B)$, where B is a ball in \mathbb{R}^n.

2. $\left(\int_{T(B)} \|a(x,t)\|_X^q \frac{dxdt}{t} \right)^{1/q} \leq |B|^\frac{1}{q} - 1$.
We remark the fact that every \((X,q)\)-atom belongs to
\[L^1_X \left(\mathbb{R}^{n+1}_+, \frac{dxdt}{t} \right) \].
This can be easily seen taking into account that the support of \(a\) is contained in \(T_\varepsilon (B) \) for some \(\varepsilon > 0 \) and therefore, there exists a positive constant \(C \) depending on \(n \) and \(q \) such that
\[
\hat{T}_\varepsilon (B) \left\| a(x,t) \right\|_X d\mu(x,t) = \hat{T}_\varepsilon (B) \left\| a(x,t) \right\|_X d\mu(x,t) \leq C \left(\frac{r_B}{\varepsilon} \right)^{1/q'} < \infty,
\]
where \(r_B \) denotes the radius of \(B \). This observation suggests that the appropriate norm to consider in our atomic vector-valued tent space must be the \(T^1_{q'}(X) \) norm.

Definition 4. The \(X \)-valued tent space \(\Upsilon^1_q(X) \), will be the set of functions \(f \in T^1_q(X) \) such that
\[
f = \sum_{j=1}^{\infty} \lambda_j a_j \quad (5)
\]
where \(a_j \) is a \((X,q)\)-atom for every \(j \) and \((\lambda_j)_{j=1}^{\infty} \) is a sequence of real numbers such that \(\sum_{j=1}^{\infty} |\lambda_j| < \infty \). The convergence in (5) is considered in the norm \(\|\cdot\|_{T^1_q(X)} \).

If we define for \(f \in \Upsilon^1_q(X) \)
\[
\|f\|_{T^1_q(X)} = \inf \left\{ \sum_{j=1}^{\infty} |\lambda_j| \right\}
\]
where the infimum is taken over all representations of \(f \) as a sum of atoms, then we obtain a norm.

As in [5], p. 312, it can be seen that if \(a \) is a \((X,q)\)-atom supported on the tent \(T(B) \), then \(A_q(\|a\|_X) \) is supported on \(B \) and \(\|a\|_{T^1_q} \leq 1 \). This implies that the series in (5) is absolutely convergent in the norm \(\|\cdot\|_{T^1_q(X)} \) and for \(f \in \Upsilon^1_q(X) \) we have that \(\|f\|_{T^1_q(X)} \leq \|f\|_{T^1_q(X)} \) that is, \(\Upsilon^1_q(X) \) is continuously included in \(T^1_q(X) \).

Moreover, \(\left(\Upsilon^1_q(X), \|\cdot\|_{T^1_q(X)} \right) \) is a Banach space, fact that can be proved taking into account that the \((X,q)\)-atoms live in the unit ball of \(T^1_q(X) \) and using Lemma 1.1 in [1].

3. The Duality Result

Now, we compute the dual of the vector-valued tent space \(\Upsilon^1_q(X) \). Our first result is the following.

Proposition 5. Let \(1 < q < \infty \). Given \(\Lambda \in (\Upsilon^1_q(X))^* \), there exists a unique measure \(\nu \in C_{q'}(X^*) \) such that
\[
\Lambda(f) = \int_{\mathbb{R}^{n+1}_+} fd\nu
\]
for every function \(f \in L^q_X \left(\mathbb{R}^{n+1}_+, \frac{dxdt}{t} \right) \) supported on a tent \(T(B) \).
Proof. Let \(f \in L^q_X (\mathbb{R}^{n+1}_+, \frac{dxdt}{t}) \) supported on \(T(B) \), hence it is supported on \(T_\varepsilon(B) \) for some \(\varepsilon > 0 \). Clearly, the function \(a(x,t) = |B|^\frac{1}{q} \| f \|_{L^q_X(T(B), \frac{dxdt}{t})}^q \) \(f(x,t) \) is an atom in \(\mathcal{T}^1_q(X) \) and so

\[
|\Lambda(f)| \leq \| \Lambda \|_{(\mathcal{T}^1_q(X))^*} \| f \|_{L^q_X(T(B), \frac{dxdt}{t})} |B|^{1-\frac{1}{q}}.
\]

Since \(\Lambda \) is linear and continuous on \(L^q_X (T_\varepsilon(B), \frac{dxdt}{t}) \), we can find a unique vector measure \(\nu_B^* \in V^q_X(T_\varepsilon(B)) \) such that

\[
\Lambda(f) = \int f \, d\nu_B^*
\]

for every \(f \in L^q_X (T_\varepsilon(B), \frac{dxdt}{t}) \), and

\[
\| \Lambda \|_{(L^q_X(T_\varepsilon(B), \frac{dxdt}{t}))^*} = \| \nu_B^* \|_{V^q_X(T_\varepsilon(B))} \leq \| \Lambda \|_{(\mathcal{T}^1_q(X))^*} |B|^{1-\frac{1}{q}}. \tag{6}
\]

Next, we can decompose \(\mathbb{R}^{n+1}_+ = \bigcup_{k=1}^{\infty} T_{\frac{1}{\sqrt{k}}} (B_k) \), where \(B_k \subset B_{k+1} \) and \(n_k \uparrow \infty \), and applying the same idea as above, we can find measures \(\nu_{B_k} \in V^q_X(T_{\frac{1}{\sqrt{k}}} (B_k)) \) representing \(\Lambda \) on \(L^q_X (T_{\frac{1}{\sqrt{k}}} (B_k), \frac{dxdt}{t}) \) such that \(\nu_{B_{k+1}} \) restricted to \(T_{\frac{1}{\sqrt{k}}} (B_k) \) coincides with \(\nu_{B_k} \).

Defining \(\nu \) on \(B_0 \) by means of

\[
\nu_{T_{\frac{1}{\sqrt{k}}} (B_k)} = \nu_{B_k}
\]

we can represent

\[
\Lambda(f) = \int f \, d\nu
\]

for every \(f \in L^q_X ([\mathbb{R}^{n+1}_+, \frac{dxdt}{t}) \) compactly supported on a tent and by (6)

\[
\| \nu \|_{\mathcal{E}'_q(X^*)} \leq \| \Lambda \|_{(\mathcal{T}^1_q(X))^*}. \tag{7}
\]

This concludes the proof. \(\square \)

Corollary 6. The space \((\mathcal{T}^1_q(X))^* \) is continuously included in \(\mathcal{E}'_q(X^*) \).

Proof. This is a consequence of the fact that the space of functions in \(L^q_X ([\mathbb{R}^{n+1}_+, \frac{dxdt}{t}) \) compactly supported on tents is dense in \(\mathcal{T}^1_q(X) \), together with the estimate (7). \(\square \)

Proposition 7. Let \(1 < q < \infty \). Every measure \(\nu \in \mathcal{E}'_q(X^*) \) induces a linear functional

\[
\Lambda(f) = \int_{\mathbb{R}^{n+1}_+} f \, d\nu \tag{8}
\]

where \(f \in L^q_X ([\mathbb{R}^{n+1}_+, \frac{dxdt}{t}) \) is compactly supported on a tent, that can be continuously extended to \(\mathcal{T}^1_q(X) \) and \(\| \Lambda \|_{(\mathcal{T}^1_q(X))^*} \leq C \| \nu \|_{\mathcal{E}'_q(X^*)} \) for some positive constant \(C \).

Proof. It is immediate that the linear functional (8) is well defined since \(|\Lambda(f)| \leq \| f \|_{L^q_X([\mathbb{R}^{n+1}_+, \frac{dxdt}{t})} \| \nu \|_{\mathcal{E}'_q(T_\varepsilon(B))} \) for some ball \(B \) and some positive \(\eta \).
If a is an (X,q)-atom in X, supported on $T(B)$, then it is supported in $T_{\varepsilon}(B)$ for some $\varepsilon > 0$ and thus we have

$$|\Lambda(a)| = \left| \int_{T(B)} a(x,t) \, d\nu(x,t) \right|$$

$$\leq \|a\|_{L^q_{\text{loc}}(\mathbb{R}^{n+1}, A_q \, dx \, dt)} \|\nu\|_{V_{q'}^{	ext{loc}}(T(B))}$$

$$\leq \|a\|_{L^q_{\text{loc}}(\mathbb{R}^{n+1}, A_q \, dx \, dt)} \|B\|^{-\frac{1}{q'}} \|\nu\|_{\mathcal{E}_{q'}(X^*)}$$

$$\leq \|\nu\|_{\mathcal{E}_{q'}(X^*)}.$$

Now, if we were able to show the existence of a constant C such that

$$|\Lambda(f)| \leq C \|f\|_{T^1_2(X)}$$

(9)

for every $f \in L^q_{\text{loc}}(\mathbb{R}^{n+1}, dx \, dt)$ compactly supported on a tent, we would have that if $f = \sum \lambda_j a_j$ is an atomic representation for f, then

$$\Lambda(f) = \sum \lambda_j \Lambda(a_j),$$

(10)

and therefore

$$|\Lambda(f)| \leq \sum \lambda_j \left| \int a_j \, d\nu \right|$$

$$\leq C \sum |\lambda_j| \|\nu\|_{\mathcal{E}_{q'}(X^*)}$$

$$\leq C \|f\|_{T^1_2(X)} \|\nu\|_{\mathcal{E}_{q'}(X^*)},$$

(11)

obtaining in this way the desired result (notice that estimate (9) implies the continuity of Λ on $T^1_2(X)$, however we need the more precise estimate (11)).

To prove (9) we first notice that since $\nu \in \mathcal{E}_{q'}(X^*)$, it follows from (3) that $\eta \in L^q_{\text{loc}}(\mathbb{R}^{n+1}, d\mu)$, and for every truncated tent $T_{\varepsilon}(B)$

$$\|\eta\|_{L^q_{\text{loc}}(T_{\varepsilon}(B), d\mu)} = \|\nu\|_{V_{q'}^\infty(T_{\varepsilon}(B))} \leq \|\nu\|_{\mathcal{E}_{q'}(X^*)} |B|^{1/q'},$$

which implies that $C_{q'}(\eta) \in L^\infty(\mathbb{R}^n)$, where $C_{q'}(\eta)(x) = \sup_{x \in B} \left(\frac{1}{|B|} \int_{T(B)} |\eta|^{q'} \, dx \, dt \right)^{1/q'}$.

Thus, if f is supported on $T(B)$, we will have

$$|\Lambda(f)| \leq \int_{T(B)} \|f(x,t)\|_{X} \eta(x,t) \, dx \, dt \leq C \int_{\mathbb{R}^n} A_q(\|f\|_X)(x) C_{q'}(\eta)(x) \, dx$$

(12)

(see [5], (4.1), p. 313) and thus, the right hand side of (12) can be estimated by

$$C \|A_q(\|f\|_X)\|_1 \|\nu\|_{\mathcal{E}_{q'}(X^*)} = C \|f\|_{T^1_2(X)} \|\nu\|_{\mathcal{E}_{q'}(X^*)}$$

as we wanted to show.

This finishes the proof of the proposition. \qed

We collect our previous results in the following theorem.
Theorem 8. Let X be a real Banach space and $1 < q < \infty$. Then $(\Upsilon_q^1(X))^* \cong \mathcal{C}_{q'}(X^*)$ with equivalent norms.

References

Martha Guzmán-Partida
Departamento de Matemáticas
Universidad de Sonora
Rosales y Luis Encinas
Hermosillo, Sonora, 83000
México
martha@gauss.mat.uson.mx